THE DESIGN AND IMPLEMENTATION OF A WORLD

WIDE WEB NAVIGATION HISTORY TOOL

By
RALPH ANTHONY GRAYSON
Bachelor of Science
Langston University

Langston, Oklahoma

1995

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May. 2000

THE DESIGN AND IMPLEMENTATION OF A WORLD

WIDE WEB NAVIGATION HISTORY TOOL

Thesis Approved:

G
}J—'} uf“g/'f'ﬂ/? /
€518 Vi
7 £ /véé.é,_ﬂ_wf/
Jrpoes € Feee

M//

Dean of the Graduate College

ACKNOWLEDGEMENTS
[want express my sincere gratitude to Dr. K. M. George, my principal adviser, for
giving me invaluable advice throughout my graduate study. His guidance and generous
aid helped make this work possible.
I am grateful to Dr. G. E. Hedrick and Dr. Jacques LakFrance who gave me
support and advice to guide me through the thesis writing process. They helped me shape

and organize my work.

Last, but certainly not least, I want to thank God for giving his only begotten Son,

Jesus Christ, who died for my sin, so that I might have abundant life.

TABLE OF CONTENTS
Chapter Page
[. T RODUCTION oo iorrrn o eiassins s s e R sns S SRS R SRS Syt 1
Background......... ... 1
The PIOBIETR. .cosimsminsm it st s s rrmsian 2
TRV .m0 A T A A AR 2
152211 Tod 714 o) o DO SOOI 3
I1. RELATED WOREK oo st i s s i 4
[1I. DEVELOPMENT TOOLS.o e 11
3.1 HyperTextMarkup Language (HTML).......................... 11
3.2 JavaScCriPt. . e e e 12
IV. DESIGN AND IMPLEMENTATION. .o smnsvannsnvsvanvaass svusassss 14
4.1 The Framework of Persistent History Navigation Assistant.14
A2 IIREIRCE. cocnovcsivn ion i s S g o s S S A 16
4.3 Implementation Scheme.............ooooviiiiiiiiiiiiiiinns 18
4.4 Bvents and SAEsS.oisimmiminimnvimainsmaic s s 19
4.5 PHNA AEOTITIINS. s tasmmsmsuerssssss s i s s 21
4.6 Event Loop Algorithm..........oooiiiiiiiiiiiiiiiiiee 21
4.7 PHNA'S ADT covniuipscessismuimm e dasyss g ussisis s 22
4:8 PHNA's SAVE URL Algoritht.cscxsssemnmonmsmissssen 26
V. CONCULSTON c.cosssissmmmiama s i s R s s s aistiasis 31
Vi BIBEIOGRAPHY.....oomcnna s m st raesisss s 33
VII. APPENDIX | IMPLEMENTATINON SOURCE CODE.................. 35
VIII. APPINDIX II GLOSSARY ... e 51

LIST OF FIGURES

Figure Page
1. User View Model. ... e 15

T PHINATOVEEIACE oo anicomimnn o i o o o s o s S IR S T 3R i 17
3. PHNA Interface With Graphical History View.............ccccciiviniinnnn. AR s 18
4. PHNA Event Statle DId@IAMcccomnnomernmnsnss onsnssssmnnssmsmssnnsspamssnssbsssasmm 19
Fs; BVERELBOD. o vae v mscr s s R SR R A AR SRS 20
0, PHNAS AT . o o mmmmspnanss o s s s s s s s s e s s 23
7. BANE LIRE-AIOMRNT.. . o oo s s s s s s f s esm e s dais s vais 24
82, PHNA: Yisiis SHE Az covansmsvinmsamssiis s cai i s nsese tas 29
8b. PHNA Visits Sile B ..o e et e 29
8C. PHNA VIisits SIte C..oiiii i e et ieieeeieiee e e eneaae a3 0)

Chapter [

INTRODUCTION

1.1 Background

The Internet began as ARPNET(Advanced Research Projects Agency Network) a
computer network that was originally developed to link research institutions for the U.S.
department of defense. This network is no longer limited to research institutions and has
grown to millions of sites. Now the Internet is more than a distributed internal network of
computers sharing information via a text-based browser [SS97]. It has grown to become
a massive loosely configured web of several networks of computers located at sites all
around the world including, but not limited to, schools, organizations, corporations, and
individual homes [Cap98]. The Internet has grown in span largely due to the advent of
the World Wide Web (WWW) authored by Tim Bernes-Lee [BF99]. The World Wide
Web gives information a place to persist [BF99]. All of these sites on the WWW contain
information that can be viewed in electronic form. In order to view contents of a site
visitors use a web browser. Mosaic was the first widely used browser that could read
information on the Internet as well as display graphics in a variety of formats. Amaya,
Arachne, Opera. Internet Explorer and Netscape Navigator are the names of browsers that
have followed Mosaic. One of the most widely used is Netscape Navigator browser. [t
allows its users to view publicly available information on the Internet using protocols
such as HyperText Transfer Protocol (HTTP). The browser also facilitates its user's
movement on the WWW by providing a history list, Forward and Back buttons that allow

the user to view previously visited sites.

1.2 The Problem

There 1s a problem with the actual use of the Forward and Back buttons. The
browser keeps a list of the sites visited during a particular session. This list is intended
to be a complete list of the sites visited by a browser since it began executing. However;
often times this is not the case. The Forward and Back buttons are intended to take the
user back and forward through the list of sites kept by the browser. In many cases it does
not do this. The actions of the Forward and Back buttons on browsers can cause users to
experience bewilderment at some point in their sessions by displaying pages that are not
expected by the user [HAY99]. A solution to this problem is important since studies
have shown that, even though other means of access to history is available, in most cases
users use the Back button to access a previously visited site [AHY99]. In addition to the
frequent use of the Back button the average American Internet user spends 6.7 hours per
week using the Internet [EORO00]. Browser users would greatly benelit from having
navigation features that are modeled after the user's view of navigation sessions.
1.3 Objective

Our research aims to provide the users with a new tool to make navigation easier
than before and provide history that is well organized. In this research we define a user-
view model and present a Persistent History Navigation Assistant (PHNA) based on the
model. This tool provides all of the basic features needed in a navigation session modeled
after the user's view. This tool maintains a complete list of the user's history during and
between sessions. Furthermore, the relative order of visited URLSs is also kept. This will

give users the freedom to move back and forth between previously visited sites whether

1<

the sites were encountered during the current use of the browser or not. The PHNA gives
users a set of buttons for navigational support using the mouse.
1.4 Organization

This thesis is organized in the following way: Chapter II provides a review
of related work. Chapter III discusses the use of HTML and JavaScript languages.
Chapter IV presents the design and implementation of the world wide web navigational

tool. Chapter V concludes the thesis.

(PR

Chapter 11

RELATED WORK

In the previous chapter we described the problem that is present in existing
browsers and a solution to the problem presented in this research. In this chapter we will
discuss work that is related to the research undertaken in this thesis. The work of several

researchers is considered.

The explosive growth of the World Wide Web makes it difficult for users to
locate information that is relevant to her/his™ interest [LEA9S5]. There are many servers
to access and pages to browse [LEA9S]. Keeping track of new information as it becomes
available online is a consuming task [LEA9S]. As such efforts to make technology more
manageable are highly in demand [LEA95|. Using advanced information retrieval
techniques is one approach to such efforts [LEA95]. Regardless of the potential benefit
of these techniques in reducing users' information overload and improving the
effectiveness of access to online information. little research has been done on applying

them to the World Wide Web [LEA95].

Several WWW resource discovery applications have been built to address the
current need to make technology more manageable. These applications while differing in
size and effectiveness in varying degrees share one commonality the use of key word

searching. This method of searching involves the applications receiving a key word and

using that key word to search their internal indexes for occurrences of that word. When
occurrences of the word are found the application shows a list of URLs (Uniform
Resource Locator) or page addresses that correspond to the key word used in the search.
This method complements browsing or hypertext navigation, which is the dominant
access method of WWW users. by giving users of the applications potentially relevant

starting points [LEA9S].

A major concern with a keyword-based search tool is the design [LEA9S5]. The
design of the search tool should yield an effective tool that will meet the user's
information requirements. This involves the choice of the search algorithm and the user-
system interaction component [LEA95]. Both of these components are present in
successful commercial keyword-based search tools such as Yahoo, Lycos, Excite. and
Webcrawler. The components of a keyword-based search tool include the indexer robot,
the search engine, and the user interface [LLEA95]. The indexer robot contains the
indexes that the search tool uses. The search engine calculates the scores of WWW pages

in the index given a key-word.

The user interface to the search engine is an HTML form. which can be invoked
by standard WWW client programs such as Mosaic, Internet Explorer. or Netscape
(LEA9S5]. The form permits the user to type in a query, execute a search, set the
maximum number of hits, access documentation pages, access/run sample queries or
saved queries, and invoke other HTML forms for registering a URL or writing comments

[LEA95]. Most user interface mechanisms are implemented using the standard Common

Gateway Interface (CGI). After the user of the key-word based tool types in the
keyword(s), the query can be sent to the search engine by clicking the designated submit
query button. Upon receiving the result form the search engine, the user interface
displays a list of URL's and their respective titles ordered in descending relevance scores.
At this point the user of the tool can physically access the URL's by clicking on the titles.

The user also has access to other information and other facilities.

Organizing a large collection of hypermedia documents is one of many important
issues for effective and efficient use of information [CLV99]. Several Studies have
proposed various clustering techniques [CLV99]. Clustering hypermedia documents
dynamically based on similarity is one proposed solution; however, it has been met with
some difficulty. The classification accuracy is highly dependent on the number of
documents being classified [CLV99]. Also. finding good labels for selected categories
generated based on clustering has proven a problem [CLV99|. Because of the
shortcomings the clustering approach has been deemed inferior to the manual

classification and labeling approach for navigation [CL.V99)].

Classification and navigation has become a dominant approach to access
information [CLV99|. Several techniques can be applied to the classification and
navigation approach. A technique which utilizes external classifiers for classifying and
navigating hypermedia documents has been proven to be adaptable and have many
desirable properties [CLV99]. Two such desirable properties are breath and depth of

classification trees. One application the technique has been applied to is a personal URL

bookmark organizer [CLV99]. In this application the user's bookmarked URLs are
classified based on keywords extracted from documents [CLV99]. These bookmarked
URLs are organized as a hierachical structure for efficient access and effective navigation

[CLV99].

Another application is image classification [CLV99]. The application
extracts keywords around images from HTML documents to query the user for their
possible categories [CLV99]. Given this information the application organizes images in
a tree structure [CLV99]. This facilities effective navigation and avoids information
clutter. The application further performs image clustering by visual characteristics, such
as color and shape. After clustering one representative image is chosen for each cluster
[CLV99]. The system displays only the representative images of clusters for each

category [CLV99].

Given the potential access to hundreds of millions of pages on the Web, most
users have difficulty finding information they require. It is also easy to become entangled
in a large and complex web of decentralized, unstructured. and potentially unreliable
information [HAY99]. Once the information is found, all of the pages containing
relevant information are not readily accessible. Though it is important to find pages that
contain useful information, it is also important to support the retrieval of previously
accessed information [HAY99]. Tools that manage user histories are powerful. Given
that half of accessed Web pages are revisits, according to a paper presented in the 8"

international World Wide Web Conference entitled "World Wide Web Information

Retrieval Support Through User Histories" written by Milena Head. Norm Archer, and

Yufei Yuan [HAY99].

Most Web browsers have some type of history support within or between
navigation sessions that allow users to backtrack. This history support is implemented as
a push-down stack [HAY99]. The history stack is not a true trace of the user's navigation
pattern [HAY99]. Also, depending on how the page is loaded, it may pop several pages
from the Bookmarking and History Lists [HAY99]. A history tool called the Memory
Extender Mechanism for Online Searching (MEMOS) for Netscape Navigator developed
by Milena Head, Norm Archer and Yuffei Yuan, considers this problem [HAY99]. This
tool supports a history list during Navigator sessions [HAY99]. Research that was
conducted using MEMOS has shown that users agree that bookmarks are useful history
aids for sites that are frequently visited [HAY99]. However, bookmarks do not
adequately support less popular sites [HAY99]. [t would be unrealistic to suggest that
users should bookmark all potentially relevant pages. This approach would fail since the
bookmark list would soon become unwieldy and the relevance of a page is often not

known until after the page has been shown in the browsing session [HAY99].

The explosive growth of the WWW makes navigating the web to obtain useful
information an important issue [CLV99] [HAY99] [GW99]. Navigating the web 1s
mostly a matter of using techniques such as searching for information using keyword and
subject based searches [HAY99] [GW99]. However, tools that search are not designed to

find the geographic location of information sources [GW99]. With some exceptions most

search tools search the web and return a list of documents that match the keyword or
subject used for the search [HAY99] [GW99]. The current capabilities of search tools do
not fulfill all the needs of a search tool user. There is no way for a search tool user to
find relationships among several results of a keyword search [GW99]. Searches of search
tool users were analyzed in a study conducted by Jansen et.al. [BEA98]. This research
revealed that scarch tool users are interested in categories dealing with a geographical

location [GW99] [BEA9S].

Jayesh Govindarajan and Matthew Ward present a new search tool called
GeoViser [GW99]. GeoViser differs from other search tools (e.g. Excite, Yahoo,
Infoseek) only in that it provides a map of the United States [GW99]. Points are plotted
on this map that correspond to the location of the URL that is given for a particular
search [GWO99]. This search tool gives valuable information to users who are looking for

answers to questions that are location specific.

Another problem presented by the users and providers of the internet is that of
consistency [RY99]. When interrelated documents of information are provided over the
internet frequent updates of the information becomes an issue [RY99]. Very often users
acquire inconsistent information. or they are unable to acquire any information
whatsoever [RY99]. One solution proposed for this problem is found in a technique
presented by Sampath Rangarajan and Shalini Yajnik of Lucent Technologies and Bell
Laboratories respectively [RY99] [RY99]. This technique involves using client side state

Hypertext Transfer Protocol (HTTP) cookies [RY99] [RY99] [CSS99]. The histories of

a client's access are kept using cookies using a technique that is based on the Netscape

cookie proposal [RY99] [RY99] [CSS99].

10

CHAPTER 111

DEVELOPMENT TOOLS

3.1 HyperText Markup Language (HTML)

The browser is a client-side software application that allows the user to navigate
the World Wide Web [BF99]. The browser interprets HTML commands to format
documents for the viewer. The browser also gives users the ability to follow links in the
documents. The browser interacting with the server accomplishes this. The user initiates
a request for information or action and the server interprets the request and takes some
action. Among the most popular graphical browsers is Netscape Navigator [BF99].

There are several tools that can be used to create browser enhancements that make
the users navigation session more useful including Hypertext Markup Language (HTML)
and JavaScript. HTML code uses a set of tags that tell the browser how to format, load
and align text and graphics. Tags are commands that define the overall form of the
HTML document and give basic structure to the way a page appears. Tags are not visible
on the browser, but their effects are. A tag might note that a line should be a title or a
heading. for example.

Each tag is enclosed in angled brackets. Paired tags are different in that the last
tag has a forward slash just before the command. Commands are not case sensitive. but

are usually written in uppercase to promote clarity by making commands easier to spot

when reading an HTML file. Hypertext links are special tags that link one page to
another page or resource. When a mouse is placed over a link and clicked. the browser

jumps to the link’s destination.

3.2 JavaScript

JavaScript is a new technology that was developed initially by Netscape under the
name LiveScript. It is intended to extend the capabilities of basic HIML. JavaScript
usually resides between the <SCRIPT>...</SCRIPT> tags in ordinary HTML documents.
It gives developers the ability to write scripts that interact with objects within a web page,
such as forms, frames, and background color. In its current state it is more closely linked
to Java which is why the name was eventually changed. It is designed to allow logic to
exist on the client side to perform tasks such as data validation.

JavaScript is different from Java in that it is not as strict or sophisticated as Java.
Java is an object-oriented programming language and JavaScript is object-based. Java
has “strong typing (all variable data types must be declared), static binding (object
references must exist at compile time). and is compiled into bytecode. The bytecode is
then interpreted. In contrast, JavaScript has loose-typing and dynamic binding [FS98|.
JavaScript is strictly interpreted not compiled even though the term “JavaScript
compiler” is commonly used to refer to the built-in browser mechanism that reads the
code and executes it or produces an error message. Both JavaScript and Java can be used
to make web pages more sophisticated and exciting by executing the ‘local code’

[Way97]. The biggest difference is that JavaScript will only run on a browser. It is

tightly integrated into HTML whereas Java is simply connected to an HTML document
through the <APPLET> tag and is stored in another file.

JavaScript is interpreted [Way97]. Variables and functions can be defined
dynamically and used several lines later. There is no compiler or preprocessor [Way97].
I'he disadvantage of being interpreted is that it takes longer for the code to execute
because the browser translates the instructions at runtime just before executing them
[WEA97]. The advantage is that it is easier to update the source code. When the script
changes in the source HTML file the new code is executed the next time the user accesses
the document [Way97].

Other characteristics of JavaScript include its being event-driven [WEA97]. Most
JavaScript code is written to respond to events generated by the user or the system.
HTML objects, such as buttons, or text fields are enhanced to support event handlers
[WEA97].

Finally JavaScript i1s a good multipurpose tool that allows developers to
accomplish many goals. For example, it helps enhance static [ITML pages. through
special effects, animation, and banners [WEA97]. It permits validation of data without
passing everything to the server and is a building block for client/server Web
applications. JavaScript serves as a bond between HTML objects. Java applets, and
Netscape Plug-ins while providing connectivity without using a Common Gateway

[nterface [WEA97].

CHAPTER IV

DESIGN AND IMPLEMENTATION

As mentioned in the introduction, the goal of this research is the implementation
of a World Wide Web tool to assist browser users. In order to develop the tool, a user
view model is introduced. Various aspects in the design and implementation of the
PHNA are described in this chapter.

4.1 The Framework of Persistent History Navigation Assistant

In this section we present the basic framework of the PHNA by describing its
GUI, algorithms, ADT, and underlying model. The sites visited by web users can be
viewed as the nodes of a network. Two relations, front and back, can be defined between
two nodes of this graph (shown in figure 1). These relations map to the BACK and

FORWARD buttons. Figure 1 illustrates these concepts. We call this a user view model

{2) FL

o / e
y_EL \ (3 BACK

f\, " .J" f\\ > (6) BACK \)

4 FL (3 BACK

Figure 1. User View Model.

of history as opposed to the current stack model. In this model (illustrated in figure 1)
site A is the site that is loaded when the PHNA is started. The user follows a link (F.L..)
from site A to site B. The user then follows a link from site B to site C. The BACK
button (B.B.) is used to visit site B again. From site B a link is followed to site D. When
the user uses the BACK button for the second time he/she is taken to site B. This time
when the BACK Button is used the user is taken to site A in most browsers. However, in
the PHNA the user is taken to site C. This is the correct action taken by a BACK button
modeled after the user’s view of history. Current browsers contain BACK and
FORWARD buttons, that often times do not match a user’s view of the navigation
history. The confusion caused by BACK and FORWARD buttons that are not modeled

after the user’s view is prevented in the PHNA. The BACK and FORWARD buttons

have access to the complete history list. The user can also view the complete navigational
history.

The PHNA implements BACK and FORWARD button histories on an inter-
sessional basis using persistent client state HI'TP cookies as well as on an intra-sessional
basis using a tree structure implemented using arrays. Previously visited sites can be
visited by clicking the BACK or FORWARD button, or by clicking the VIEW button on
the PHNA interface which produces a visual model of the tree structure, and allows the
user to see how pages relate to one another. Thus, enabling them to make decisions about
the path they want to follow. This is in contrast to the stack model of current browsers
which do not provide a sense of space or proximity modeled after the user's view. The
PHNA utilizes multiple arrays to maintain proper relationships between elements of the
tree. A parent array is used to store Uniform Resource Locators (URL). If links have
been followed the element stored in the parent array is a reference to a separate child
array which in turn contains a reference to the URL. Complete implementation details
can be found in section 4.8. We describe the interface in the following section.

4.2 Interface

The interface of the PHNA facilitates its use. It consists of two frames: an upper
frame for tool use and a lower frame for browsing. Figure 2 illustrates the PHNA
interface. A user may access sites by using the location bar within the upper frame, or by
following links. Either method produces an entry into the URL array. [f the user revisits
sites by using the BACK and FORWARD buttons, then the site is not added. In this case

the user is logically moved backward or forward to the requested site in the tree.

The PHNA considers only the sites actually visited and links followed by the user
when preparing the graph in figure 3. It does not make assumptions about issues of
relevance. This is appropriate since a large number of users report that finding pages
already visited as a problem [BEA99]. This is significant since 88% of individuals pages

are revisits [BEA99].

- History Tool Frames - Netrcape
Fie Edt View Go Communcsior Help
[h\:l;p:/fuuu.m,arg - GO' m] Fm j: ml RELOAD t | . ‘I';‘j

. s e S e ST T e Tt =1
VIEWHSTORY | PRNT| savE | RETREVE | HOME | sEarcH | wete| "

feedback join go shopping search

The Eirst Society in Computing

d it Assocml_:lon for) 1ain Nova
= Computing Machinery ACM
Founded m 1947, ACM is the world's first =i
educational and scientific computing society Purchase
3 publications Today, our members — over 80 000 i -
computing profassionals and sludents
2 piuital Librar warld-wide — and the public turn 1o ACM for
Riuital Libirary authontalve publications, pioneernng
. ? conferences, and wisionary leadership for the Subscribe to
] !'\l}'_it_:.lﬂ.'_l!fl_'.’_ﬂf;?! new millennium Digtal Libras
Groups (SIGS) L
Saturday, Feb 2000 Maazme
2 Conlfurences Aturday; Fabary 3, .
< Competa
2 1 ducation R What's New! oy 4
] r 1
* Chapturs 2 Glitis Ly
o Document: Done e e O NE

Figure 2. PHNA Interface.

The VIEW button allows a user to view the history list. The list is presented in a
tree structure as shown in Figure 3. The tree is generated from the information in the

ADT arrays (refer to section 5.2) and is displayed in the lower frame.

Inter-sessional support is provided using cookies when the user clicks the SAVE
button. The tree is stored on the users computer for two weeks. To retrieve the tree the

user simply has to click the RETRIEVE button and the list will be loaded.

i History Tool Framer - Netscape
Fls E® Vew Go Commuicso Hep

Ihl\‘.p:r’!uumcompute:.oxq! E’ BACK l FORWARD I STOPJ RELOAD I i j
vl o rrareswt 90 Lo = e a4 Fric v T Loy Baom b
VEWHSTORY | PRINT| save | reREVE | Home | searce | HEW | F
"BIStOry Lise e #rcen. Lk eloone
3SR) ; i Re - aEsocmEd (o My
=i 4 | LM I ¥
AT R i i ik A ¢
ol ¥ Document Done ! e aw &2 & |

Figure 3. PHNA Interface with Graphical History View.

4.3 Implementation Scheme

[n this section we describe the details associated with the implementation of the
PHNA. Models and concepts used in designing and implementing PHNA — state
transition diagram, event-driven programming, ADT, etc are provided in this section.
The state diagram, event-loop, and the ADT and algorithms characterize the

implementation. They are described in the following subsections.

4.4 Events and States

The key elements of the PHNA are GUI components, Layout, Listening state, and
Event processing. Events signal important user actions like pressing enter key or a
mouse click. The listening state is the state in which the program waits for events to be
triggered by the user. GUI components, such as buttons and the text field, are the screen
elements that are manipulated by the user with the mouse and keyboard. The layout of
PHNA governs how these elements are presented on the screen. Each element also has
an event (possibly null) associated to it. The elements actions are associated to events.

The PHNA responds to events, generated by GUI components. PHNA waits in

the listening state for these events. An event triggers the execution of a specific code

Start

Action State

Figure 4. PHN A Event State Diagram

19

While (Evert ! = Quit){

Case (GO).

ACTION - Save the curemt URL ad appropnate
mfoemationand make the viewng fame
show the correct wri

Case (LINK):

ACTION - Save the hinks wiand gpropriae

wfoemation
Case (BACK):

ACTION - Aecess the @ray RACK arrgy 1o o¥tain the
dex for te logical predecessor of the
current uri

Case (FORWARD):

ACTION - Access the aray FORWARD arqy v olain
the inde x for 1he logical successor of the
current wi

Case (STOP)

ACTION - Sop the loading gf the current wri
Case (RELOAD):

ACTION - Reload the currere wl
Case (PRINT):

ACTION - Prmi the current Frame
Case (SEARCH):

ACTION - Load asearch engine wl
Case (HOME):

ACTION - Ioad the first wrlin the wlarrgy
Case (SAVE)

ACTION - Save all @rqys and index vanobles v a

cookae
Case (RETRIEVE):
ACTION - Repieve @rays ad indres from the coolie
Case (HELP):
ACTION - Show help file contents
Vi End Bvent Ioop

Figure 5. Event Loop
segment. When PHNA starts it immediately enters the listening state. When an event
occurs, PHNA enters the action state in which events are handled. After the event is
handled the program modifies the GUI, if necessary, and returns to the listening state.
This process is described in the following section. The event state diagram is shown in

Figure 4.

4.5 PHNA Algorithms

The actions of PHNA may be explained via the major algorithms. They are the
event loop algorithm and the SAVE URL algorithm. Events are the result of user
actions (e.g. button click or keystroke). They are handled by Javascript built in event
handlers which invoke application specific event methods. The event loop algorithm
defines the process PHNA uses to handle specific events including the distinct event
methods that are called.

The SAVE_URL algorithm defines how URLs are saved. The definition covers
all possible instances in which a URL should be saved in order to maintain complete
history of all the sites visited during a particular session. This includes URLs that are
typed in, site link clicks, and history link and button clicks.

4.6 Event Loop Algorithm

The event loop algorithm (given in Figure 5) calls several application specific
methods. The GO application method calls the SAVE URL application method
explained in section 4.8. It passes as an argument the URL that was typed into the text
box in PHNA by the user. The GO application method also changes the view frame
(refer to Figure 2) in PHHNA to the URL that the user entered.

In contrast to the GO method, the LINK application method gets the URL from

the view frame. It then calls the SAVE URL application method and passes this URL as

an argument. The BACK application method changes the site in the view screen by
assigning it the predecessor of the current URL. It gets the predecessor of the current
URL by calling PHNA's MOVE BACK method described in section 4.7. The
application method named FORWARD gets a successor to the current URL from the
MOVE_BACK method. The successor URL is then assigned to the view screen. The
STOP application method stops the loading of the current URL. The RELOAD
application method loads the current URL in the view screen. It gets the current URL
from the GET CURRENT URL method explained in section 4.7. The Print application
method prints the site shown in the view screen. The SEARCH application method loads

search engine site www.netscape.com. Home is an application method that loads the first

URL in the history list in the view screen. The SAVE application method saves the
PHNA data structure in a cookie by using the SAVE_AS COOKIE discussed in section
4.7. RETRIEVE is the application method that retrieves and restores the data structure
saved by the SAVE AS COOKIE. The HELP application shows a series of help screens
to assist the user in the use of the PHNA.
4.7 PHNA's ADT

The essence of the PHNA implementation is encapsulated in its ADT. The
PHNA Abstract data type (shown in figure 6) is composed of nine private data members
and five service methods. The program uses this data type to perform functions that are
vital to keeping a complete history list and providing user access to this list in a way that
is consistent with the users-view model based view of history. One of the private data
members is the dynamic string array URL array. This array is used to store all of the

URLSs that are visited. The BACK _array is a dynamic integer array that is used to store

22

Class History |
Private:

String URL array |}:

Int BACK array{);

int FORWARD];

int CHILD Count[};

String CHILD [] [;

int URL_index;

int BACK _index;

Int FORWARD Index;

Int CURRENT _Index;

Publlc:

//Save data members as a cookie
vold SAVE AS COOKIE()

/Restore data members from the cookie
votd RETRIEVE FROM_COOKIE()

//Returns logical predecessor of the carrent url
String MOVE_BACK()

‘Retruns logical successor of the currend uri
String MOVE FORWARD()

//Saves a url argument and appropricte
information

freturns true | succesgid and false otherwise
SAVE_URL{String FORMAL URL, Boolean
CHILD URL)

}//End Class History

Figure 6. PHNA's ADT

23

//The following method saves the appropridke indices,
URL and values in Grroy's
SAVE URL (String URL, Boalesn CHILD URL){
//Save the URL Io e proper elemend in URL_array
URL array[URL Index] = URL
I (URL index > 0){
‘Save the index of the current URL in the proper
Vielermend of the BACK array
BACK arrey{BACK Index] = Current
++BACK _Index
Current_index = URL Index
//Save the index of the current URL in tee proper
Vielement of the FORWARD armqy
FORWARD array[FORWARD Index] =Current_index
+-FORWARD [ndex
Else
Current_index = URL index
If (CHILD URL == FALSE){
Vintlalive elewend of CHILD (burd array
CHILD_Count[URL _index] =0
/Creale a reference o an argy ol stores tie currend
/URL's children
CHILD[URL _index] = new srray()
/ntlaltze the flrst element of the flrst element of Ow mew array
CHILD[URL_Index][CHILD Count[URL_index]j =" "
j/End If
Hse {
/incremend elemend of CHILD Cound array
++CHILD Comni[URL index|
//Asxign the Carrent URL lo the proper location in the CHILD array
CHILD[URL_Index][CHILD_Count[URL_index]]=URL
| / End Fe
=+ URL Index
1 End SAVE URL

Figure 7. SAVE_URL Algorithm

¥V LA

¥ ¥ AT

.

=iV

the indices. The indices that are stored in the array are the indices of predecessor URLs.
The FORWARD array is also a dynamic integer array that stores indexes. However; the
indices that are stored in this array are indices of successor URLs. The CHILD Count
array 1s an array that is used to store the number of children of each URL stored in the
URL array (or the number of URLSs that are visited as a result of following a link from
that URL). The CHILD array is a dynamic two-dimensional array that stores the actual
child URLs. The first dimension corresponds to the URL in the URL array the second
dimension contains the child URL. The URL_index, BACK index, and
FORWARD index are integer variables used to access the URL array, BACK array,
and FORWARD array arrays respectively. However, the CURRENT index integer
variable holds the index of the URL that is currently seen in the view frame.

The MOVE_BACK method uses CURRENT _index to access the BACK array.
This element in the BACK array is the index of the element in the URL array that
contains the predecessor of the current URL. The predecessor URL is then returned by
the MOVE BACK method.

The MOVE FORWARD method uses the CURRENT index to access the
FORWARD array. This access yields the index of the successor to the current URL that
is saved in the URL array. The index is used to obtain the successor URL. The
MOVE FORWARD array then returns this successor URL.

The SAVE_AS _COOKIE method concatenates all of the contents of the data
members into a string object and saves the contents of this string object in a cookie. The

RETRIE FROM COOKIE method retrieves the cookie and assigns the contents to a

RidME § MW LY vy § WRT

string object. It then reassigns the values to their appropriate data members. The

SAVE_URL method saves URLs according to the user view model.

4.8 PHNA's SAVE_URL Algorithm

The SAVE URL algorithm (shown in Figure 7) is implemented in the
SAVE URL method. This method facilitates the saving of all URLSs visited by the user
and ensures that the resulting history preserves the user view model. It accomplishes this
by utilizing all the private data members. Figures 8a-8c illustrate the actions performed
by the algorithm using three snap shots.

Each visited URL is saved in the first available element in the URL _array. If this
is the first URL visited, there is no successor, predecessor, or child URL. We assign the
integer variable CURRENT index the value of the index of the recently saved URL.
However. if this is not the first URL visited, then we save the value of CURRENT index
in BACK array using BACK index as an index and increment the BACK index
variable. Then assign the index of the element in the URL array that contains the
recently saved URL to CURRENT index. CURRENT index now contains the index of
the predecessor to the previous URL. Therefore, we assign the value of
CURRENT _index to FORWARD array using the FORWARD index variable as an
index.

If the visited URL is not a child URL then the corresponding element in the
CHILD _array is initialized to zero. However, if this URL is a child URL then the value in

the corresponding CHILD Count array is incremented by one. We instantiate an array

26

L

FANSY VY s

object and make the first element in the array reference this array object. Then save the
URL at the proper location in the CHILD URL by using the values in URL index and
the value in the CHILD COUNT array. We increment the URL index, BACK index.
and FORWARD _index variables so it may be used to access the next empty slot in the
URL _array.

Figures 8.a, 8.b, and 8.c illustrate the effect of the algorithm via an example. We
assume that a user visits three different sites. The URLSs of the sites are represented by
sites A, B, and C respectively. Site A is visited when PHNA starts. The user clicks a
link in site A connecting him/her to site B. The user then enters the URL for site C in
PHNA's locaction box and clicks the GO button. In this session URL B is a child of A.
A and C do not have any parent URLs. A is the URL of the first site visited. It is saved
as the first element of the array URL array. All elements of the BACK array.
FORWARD array, CHILD Count, and the CHILD array remain empty since no URL
other than A has been visited. Two private data members of PHNA’s ADT (URL_index
and BACK index) have values of one. This is the index of the next empty in the
URL array. Since the first slot in the URL array contains the URL of the site that is
viewed when the PHNA is started. The array BACK array will never have a value in its
first element since there is no predessor for the first URL. Therefore, the first value
stored in Back array is stored in its second element element BACK array[l].
CURRENT index is zero because the URL of the site being viewed (in the view screen)
is in the first element in the URL array (URL array[0]). FORWARD index contains the

value zero because URL A has no successor.

27

RSt 1§

When the second site is visited its URL (B) is saved in the second element of the
URL _array. This site was visited by clicking on a link in the previous site (A). This
makes B a child of A. B is saved in the second location in the URL array. The integer
zero is saved in the second location of the BACK array. Because the predecessor to the
URL B is A and the index of the element that contains A in the URL array is zero. One
is saved in the first element of the URL array since B is the successor of A. The index of
the element containing B in the URL array is one. The first element in the
CHILD_ Count array is assigned the value of one. B is a child of A so URL A has one
child. We instantiate an array and make the first element in the array reference this array
object. We then store the URL B and all subsequent child URLs of A in this array object.
The second element in the CHILD array remains empty and the second element in
CHILD Count array is assigned the value of zero because B has no children.
URL_index is incremented by one so that it can index the next empty element in the
URL array. One is assigned to CURRENT index since the index needed to asscess B in
the URL array is one. The variables BACK index and FORWARD index are assigned
the value of two and one respectively so that they can save the appropriate indices when
the next site is visited.

The URL C is saved in the third element of the URL _array when C is entered into
the location box of the PHNA and the go button is pressed. The corresponding third
element in the BACK array is assigned the integer one (the index of C's predecessor in
the URL array). The second element in the FORWARD array is assigned the value of

two (the index of B's successor in the URL array). The third element in Child_count is

P b e b

BACK wndex
- I} I}.\L‘K =Ty TP
—_— B
| URL index
| af e - URL_index e
—l | i = - = ~
e ey — e
iy et ey S FORWARD index
‘_’ | | CHILD Coumt . .
. L ~()
‘ CHILD

Figure 8a. PHNA state after the initial visit (to site A)

i I HALUR index
il | HACK wrn e e
= 1
VRL index
A B - . LRL mdex .)
== 510 555 Wl [= :
Mt P DRVARL, gy FORWARD index

1] CHILD Coamt

CURRENT mdex

HILIY

Figure 8b. State of PHNA after viewing another site (Site B)

T EURWARD wmey

|__.._|;1' —_'_"""".—_‘—_-_— —

BACK mndex

FORWARD index

Figure 8c . PHNA state after visiting site C

-

P hm ey el wew M . ..y
Pl edes v mr b m—

., LR B LTAN

CHAPTER V

Conclusion

Netscape Navigator™ and other browsers have features that may cause for users
confusion. Features such as the BACK and FORWARD buttons on these browsers are
intended to help the user navigate the World Wide Web. However, since these features
use a history that is not modeled after the user's logical view of their navigational pattern
they can cause confusion instead of providing clarity. This confusion is due in part
because the history is implemented using a pushdown stack. Depending on how some
sites are loaded the browser may pop sites of the stack and never push them back onto the
stack. This effectively loses sites by making them makes inaccessible to users through
the BACK and FORWARD buttons.

This research presents the PHNA as a solution to the problem of improperly
modeled history lists found in browsers. The PHNA provides the user with BACK and
FORWARD buttons that are modeled after the user's view of history. Its history is
implemented using dynamic arrays. This saves space and allows all visited sites to be
saved in a way that corresponds with the user's view of history. Since the PHNA uses
arrays to store its history no sites are lost as result of the user going back several sites.

The PHNA can be used with any Javascript™ enabled Netscape browser.

Persistent client state HTTP cookies are used to save the complete history list. Which

I Sl SRER EL S L]

can be retrieved or overwritten in a later browser session. The PHNA eliminates

confusion caused by incomplete history lists that are not modeled after the user's view.

32

I S AU S

Tl it s e

REFERENCES

[AA99] The Anatomy of an Applet. Java Tutonal,
http://www.gip.jipdec.or.jp/~kato/java_tutonal/applet/antomy/index.html

[BEA98] Bateman, J., et al, The subjects they search, and sutficiency: A study of a large
sample of EXCITE searches, In Proceedings WebNet '98, November 1998.

[BF99] Berners-Lee, Tim, Fischetti, Weaving The Web, HaperCollins, 1999

[CHI%] Chan, P., Hopson, K. C,, Ingram S., E., "Developing Professional Java Applets",
Sam Publishing, 1996

[CSS99] "Client Side State - HTTP Cookies”,
http://home.netscape.com/newref/std/cookie_spec.html.

[CLV99] Chang, Edward, Li, Wen-Syan and Quoc Vu,, On Constructing Personalized
Navigation Trees for Web Documents, 8" International World Wide Web
Conference 1999

[DB96] Davis, O. McGinn, T., Bhatiani, A., "Instant Java Applets" Ziff-Davis press, 1996

[DD97] Deitel, H.M.., Deitel, P.,]. Java How To Program, Prentice Hall, 1997

[EEA99] Eades, Peter, et. al, Visual Web Browser - mapping and browsing the web
with a sense of "space” 8" International World Wide Web Conference 1999.
pp. 86-87

[FEA97] Feather, S., “Java Script by Example”. Joseph B. Wilcert and Co., 1997

[GR96] Gulbransen, D., K. Rawlings,]. December,].
"Creating Web Applets With Java ",1996

[GW99] Govindarajan, J., Ward, M., "GeoViser: Geo-Spatial Clustering and Visualization of
Search Engine Results" 8" International World Wide Web Conference 1999

[HAY99] Archer, N., Head, M.,Yuan, Y., Wold Wide Information Retrieval Support
Through User Histortes, 8" International World Wide Web Conference 1999

33

bl iadess i e

[KM99] Kopetzky, Te‘h)dorich. Max Muhlhauser, Visual Preview for Link Traversal on
the WWW, 8" International World Wide Web Conference 1999
[http://www8.org/w8-papers/4b-links/visual/visual.html]

[Mcc96] McComb, Gordon. “JavaScript Source Book” John Wiley & Sons, Inc. New York.
1996

UJVJ97] Java Versus Java Script. Special Edition Using Java, Second Edition. 1996-97

[LEA95] Lam, Savio L. Y., et al., A World Wide Web Resource Discovery System, WWW 5
1996

[LL98] Lewis, John & Loftus, Willam Java Software Solutions, Addison Wesley, 1998
[OA97] Overview of Applets. Java Tutonal. 1996-97

[PM97] Purell, Lee, Mary Jane Mara, “The ABC’s of Java Script” Sybex, Inc. Alameda, CA.
1997

[Rey96] Reynolds, M. C., Wooldridge, A.., "Using JavaScnpt Special Edition" QUE, 1996

[(RY99] Rangarajan, S., Yajnik, S. WCS: Consistent Update and Retrieval of Documents in
a WWW Server, 8" International World Wide Web Conference 1999

[SS97] Sachs, David and Henry Stair. The 7 Keys to Effective Web Sites, Prentice
Hall, 1997.

[Way97] Wayner, Peter. Java and JavaScript Programming, Academic Press Inc., 1997
[WEA97]Wagoner, Richard, et al., JavaScript Unleashed, 2" ed. Sams.net, 1997

[W]S97] What Is Java Script? Java Script Handbook. 1996-97.

34

Appendix |

IMPLEMENTATION SOURCE CODE

Start Frame
<html>
<head>
<title>History Tool Start Page</title>
</head>

<body bgColor=Silver>

<SCRIPT LANGUAGE="JavaScript">

/<!

var newWindow

//Open a new window with no location box

newWindow =

window.open("HistoryFrames_1 html".""."location=0,toolbar=0.resizable=1 scrollbars=1
status=1.,menubar=1")

//close the current window

window.close()

‘J’.J" -
</SCRIPT>
</body>
</html>

Frame Set
<html>
<head>
<title>History Tool Frames</title>
</head>

<Frameset Rows="15%.85%">
<Frame SRC="Hist_tool 1.html" Name = "bridge" >
<Frame SRC="http://a.cs.okstate.edu” Name = "screen">

</Frameset>

</html>

Driver Frame

<html>
<head>
<title>}

{istory Tool Control Frame</title>

</head>

<body

bgColor=silver>

<SCRIPT LANGUAGE="JavaScript">

2 .

//Variable to contain the selected text

var selected Text=""

//Variable that designates a selected text event

var select=0

var part ="

var add = "http://"

var temp =0

//Designates the URL change as the result of a link click
var link = 0

//Syncohnizies the link_click function with other functions
var start =0

//Array to store URLs

var URL = new Array()

//Array to store appropriate BACK url indices

var B URL =new Array()

//Array to store appropriate Forward url indices

var F_URL = new Array()

//Array used to store an array of Urls that are result of following a link from

another Url

var Child =new Array()

//Array used to store the number of children a Url has

var Child_Count = new Array()

//Index for Child array

var Child_index = 0

//The URL array will always fill up one element ahcad of the I URL array
var index = 0

//The first array element of the B URL will always be empty

var B_index = |

//The F_URL array will always fill up one element behind the B_URL array
var F_index =0

var temp = (

var Back = 1

36

var Forward = 0

var Current = 0

// The name of the cookie that is saved and retrieved
var cookie Name = "PHT _info"

//variable used to store cookie information
var Cookie comp=""

var Cookie arc =
var urlString =""

mn

//Assign the first element of the URL array an intial value
URL[index]= "file:///A:\paper graphic.htm"
//Make a child array for this URL
Child[0] = new Array()
Child[oj[o]=""

//Set the number of children this URL has to zero
Child Count[0] =0

++index

/ICall to get_priv

get_priv()

/¥

This function gains security access and uses a timer to

cull the function load in four seconds.
*f
function get_priv(){

//Obtain Universal Browser Access so the Url of the "Screen” frame can
be viewed

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserAccess")

//Call the Load function in four seconds
timerlD = setinterval('Load()’. 4000)

37

PSS T Aol wa »

This function clears the previous timer and sets a new one that
calls the link_click method every two seconds.

*/

function Load(){

clearInterval(timerlD)
timerID = setInterval('link _click()', 1000)

b

;’#
This function changes the "Screen" frame to a URL by accessing the
the appriopriate element of the Back array and using its value
as an index to the URL array. The function then changes the
appriopriate arrays and variables.

¥/
function goPrev() {

//Obtain Universal Browser Access so the Url of the "Screen" [rame can
be viewed

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserAccess")

//Disable the link method
start = |
if (B_index == 1)}
alert("Please visit another site before using the Back button™)

1
]

else
if (Current == 0){
alert("You are at the beginning of your history list.")

:
s

else]

//Assign the current index teh correctindex to the URL
array

Back = B URL[Current]

PAN NEW W T L

//change value of the current variable to represent the
//approiate position in the array
Current = Back
//Change the "viewing" screen (screen frame)
//show the correct URL
parent.frames|1].location.href = URL[Back]
}//End Second Else

}//End First Else

//Wait for the URL to load into the "screen" frame
while (parent.frames|1].location.href != URL|Current])

start = 1
//Enable the link method
start = 0
}//End goPrev
f*
This function changes the "Screen" frame to a URL by accessing the
the appriopriate element of the Forward array and using its value
as an index to the URL array. The function then changes the
appriopriate arrays and variables.
*
function goNext() |
//Obtain Universal Browser Access so the Url of the "Screen” frame can be
viewed
nclscapc.sccurily.Privilechanagcr.cnahlcPriviIcgc{ "Universal BrowserAccess")

//Disable the link method
start = 1

if (F_index == -1) { .
alert("Please visit a site before you use the FORWARD button.”)

|
]

)

if(Current >= F_index)|{

39

URL

alert("You are at the end of your history.")

else{
//Assign the currrent index to the variable Forward
Forward = F URL[Current]
//change value of the current variable to represent

/lapproiate position in the array
Current = Forward
//Make the view frame "screen” show the correct

parent.frames| 1].location.href = URL[Forward|]
+//End Second Else
}//End First Else

//Wait for the URL to load into the "screen" frame
while (parent.frames|1].location.href != URL[Current})

start = |
//Enable the link method
start =0

1 //End of goNext

/%
This function obtains the appropriate URL and changes the frame
"Screen" to that URL and assigns the appropriate values to
arrays and variables in this program.

%/

function go_location() {
urlString = ""

//Obtain security access

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserAccess™)
//Disable link method
start = |
//Check to see if the go_location method was called as a result
//of a link click or the use of the location box or button.
//1f the result of a link click then get the URL of the
/I"screen” frame and assingn it to the variable urlString.

40

PAY BIW SR L

//If not then the method was called as a result of the use
//of the location box or button in which case the variable
//urlString is assinged the URL given in the location box.
if (link == 1)
i

urlString = parent.frames|[1].location. href

}

else{
//Assign the value of the Locationbox to the variable
urlString = document.forms[0].LocationBox. value

if (urlString !'="") {
//Add the Protocol "http://"
if (add !'= urlString.substring(0.7))

]
\

urlString = add + urlString

//Add a"/" to the end of the URL il'one is not present

len = urlString.length

part = urlString.substring(len - 3.len)

if ((urlString.charAt(len - 1) !'="/")&&((part == "com")||(part

"edu")||(part == "org")/|(part == "gov")))

link

urlString = urlString + /"
J/1f the call to the method was not a result of the user clicking on a
//Make the view frame show the URL in the variable

if(link == 0){ o
parent.frames| 1].location.href = urlString

41

URL to

//Make a child array for this URL
Child[Current] = new Array()

//Set the number of children this URL has to zero
Child Count[Current] =0

alert("The value of Child Count is=")
alert(Child Count|[Current])

}

else

/I Assign the integer in the number of children the URL has to the
// child _index varible so the value can be used to add the current

// the child array of the previous URL
Child_index = Child Count[Current]

//Add the current URL to the parents Child array
Child[Current][Child index] = urlString

alert("The value of urlString =")

alert(urlString)

//Add one to the value in the Child Count array
Child Count[Current] = Child Count|Current] + 1

//alert(" The value of Child[Current]|Child index]| is =")
/falert(Child[Current|[Child_index|)

V/End Else

/I Assign the "screen” frame's URL to the URL array
URL[index] = urlString
//Assign the index of URL to the correct position

42

£ A WS it 4N

//in the back array

B URL[B_index] = Current

++B_index

//Make the current indicate the correct position in the array
Current = index

//Assign the index of URL to the correct position

//in the forward array

//The index is added one element behind the back array and

//two elements behind the URL array

//If the use of the "Back" Button does not preceede the

//use of the go to then first condition else second

//second condition

if (Current > F_index)

F URL[F index] = index

++F _index
}
else
{
F URL[Current]
|
++index

//Wait for the URL to load into the "screen” frame
while (parent.frames| 1].location.href != URL|Current])

start = 1
//Enable link method
start = 0
link =0

alert("Please enter a URL before clicking the Location button.”)

! //End go_location

function child()

43

P

i This function deletes a previous cookie if there is one. Then it
assigns all the cookie values to a string.

¥/

function set_Cookie_Info() {

//Varible to represent Two_Weeks = 12096 * 100000
var Two Weeks = 14 * 24 * 60 * 60 * 10000
var expr = new Date();

//Set the time for the cookie to expire as two weeks from the current time
expr.setTime (expr.getTime() + Two Weeks)
//Save cookie information in a string object with a ' as a seperator
//The join method puts array methods into strings seperated by commas
Cookie_arc += URL.join() + """
Cookie arc +=B_URL join() + "™
Cookie_arc += F_URL.join() +""
Couki(:__arc = index + """
Cookie arc += Current + "™
Cookie arc += B index +""
Cookie arc +=F index + """

var expString = "; expires=" + expr.toGMTString()

document.cookie = cookie Name + + escape (Cookie arc) +

expString

alert(document.cookie)
} // end function setCookie info

/*This function retrieves all the cookie that has been saved.
It places all the saved cookies in a string variable and search through

this variable for the desired cookie*/

function retrieve Cookie () {
var components = null

44

//Puts a blank at the beginning of cookie and a semicolon at the end of the
cookies saved
var saved _cookie =" " + document.cookie + ";"
/I Creates a search string with the name of the cookie and an equal sign
var search_name =" " + cookie_Name +
/I Searches through all the active cookies that have been saved on machine
for the seach string
var start cookie = saved cookie.indexOf(search name)
// This variable is used to store the index of the end of the desired cookie
var end_cookie
/I The if statement puts the desired cookie into a string called components
if (start_cookie !=-1) {
start_cookie += search name.length
end cookie = saved cookie.indexOf(":", start _cookie)
components = unescape(saved cookie.substring(start cookie,

n__n

end cookie))
} 1/ end if
/falert("This is the retrieved cookie string:" + components)

return components
1 // end function getCookie

/¥
This function recieves the cookie string returned by the
function get cookie. The function then parses the string
values into the appropriate program variables.

*f

function retrieve Cookie Components() {

vartmp 1 =10

vartmp 2 =10

var tmp_string = new String()

var cookie comp = new String()

alert(document.cookie)

//Call the get Cookie function to get desired cookie in
string form

cookie comp = retrieve Cookie()

45

//Restore all the cookie values to their appropriate positons
//by assigning the values between the single qoutes to their
/lappropriate variables

tmp_1 = cookie comp.indexOf("")

tmp_string = cookie_comp.substring(0, tmp 1)

URL = tmp_string.split(".")

tmp | +=1

tmp_2 = cookie comp.indexOf("".tmp 1)
tmp_string = cookie _comp.substring(tmp 1, tmp 2)
B_URL =tmp_string.split(".")

tmp 2 +=1

tmp_1 = cookie comp.indexOf("™" tmp 2)
tmp_string = cookie comp.substring(tmp 2. tmp 1)
F_URL =tmp _string.split(".")

tmp 1| +=1
tmp 2 = cookie comp.indexOf(""".tmp 1)
index = cookie comp.substring(tmp 1. tmp 2)

tmp 2 +=1
tmp 1 = cookie comp.indexOf("".tmp 2)
Current = cookie comp.substring(tmp 2. tmp 1)

tmp 1 +=1
tmp 2 = cookie_comp.indexOf("".tmp_1)
B index = cookie comp.substring(tmp_1,tmp 2)

i

tmp 2 +=1
tmp 1 =cookie comp.indexOf("".tmp_2)
F index = cookie_comp.substring(tmp 2, tmp 1)

LLLLLS

+ // end retrieve_Cookie Components

This function prints the contents of the URL array to
the "Screen" frame with a g0 besided the element.

46

function print_Hist() {

netscape.security.PrivilegeManager.enablePrivilege("Universal BrowserAccess")

//Clear the current time interval
clearInterval(timerID)

top.frames[1].document.clear()

top.frames([1].document.write("<HTML><HEAD><TITLE>Viewing
Category</TITLE>")

top.frames[1].document.write("</HEAD><BODY><FORM=>")

top.frames| 1].document.write("<CENTER><H1>History
List</H1></CENTER>
")

for (var 1 =0; 1 < URL.length: i++) {
top.frames[1].document.write(URL[i] +" ")
top.frames[1].document.write(" <INPUT TYPE=\"button\"
VALUE=\"GO\" onClick=\"top.frames[0].go_hist location(" + i + ")\">")
top.frames[1].document.write("

")
1/ alert('inside print Hist for loop')
} // end for

top.frames| | |.document.write("</FORM=></BODY></HTML>")
top.frames|1].document.close()
t // end function print_History

J,“I‘!
This function changes the URL viewed in the child frame to the
URL selected by the user

®/
function go hist location(index) |
//Change the "Screen” frame to the URL specified by user
parent.frames[1].location.href = URL[index|

//Set a new time interval for one second
timerID = setInterval('link _click()’, 1000)
} // end go_hist_location

/¥

47

This function checks to see if a click has occurred on a
link in the "Screen" frame. If one has occured the go location
function is called. If no link has been followed no action is

taken.
2
function link click(){
//Obtain Universal Browser Access so the Url of the "Screen" frame can
be viewed

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserAccess")

if ((parent.frames] 1].location.hrefl= URL[Current])&&(start == 0))

]

t
//Set the link variable to one to indicate that the go location
//method was called as a result of a the user following a link that it

was
link = 1
/* alert ("in go location™)*/
g0 location()
}
]
/==>
</SCRIPT>
<form method="post">
<p>
<table border=0 width=100%>
<ir=
<td valign=top width=30%>
<input
name="LocationBox"
type="text"
size=25
maxlength=50
onChange="go location()"~
</td>

<td valign=top width=70%>
<input

48

type="button"
value="GO"
onClick="go_location()">

<input
type="button"
value=" BACK "
onClick="goPrev()">
<input
type="button"
value="FORWARD"
onClick="goNext()">
<input
type="button"
value=STOP>
<input
type="button"
value=RELOAD>

<ftd>
</tr>
<gr></tr>
<tr>
<td colspan = 2>
<input
type="button"
value="VIEW HISTORY"
onClick="print_Hist()">
<input
type="button"
value=PRINT>
<Input
type="button"
value=" SAVE "
onClick="set Cookie Info()">
<input
type="button"
value=" RETRIEVE"
onClick="retrieve_Cookie Components()">
<input
type="button"

49

value=HOME>
<input

type="button"

value=SEARCH>
<input

type="button"

value=HELP>

</td>

<ftr>
</table>
</form></P>
</body>
</html>

S0

Appendix II

Glossary

Application

Cookies:

HyperText Markup Language (HTML)

HyperText Transfer Protocol (HTTP)

Internet

Network

Uniform Resource Locator (URL)

51

Computer programs that perform
useful work not relate to the
computer itself.

Cookies are a general mechanism
which server side connections (such
as CGI scripts) can use to both store
and retrieve information on the client
side of the connection.

A set of codes that can be inserted
into text files to indicate special
typefaces. inserted images. and links
to other hypertext documents.

A standard method of publishing
information as hypertext in [TTML..

A coperative message-forward
system linking computer networks
all over the world.

A set of computers connected
together.

A way of specifving the location of
publicly available information on the
Internet.

VITA
Ralph A. Grayson
Candidate of the Degree of

Master of Science

Thesis: THE DESIGN AND IMPLEMENTATION OF A WORLD WIDE WEB
NAVIGATION HISTORY TOOL

Major Field: Computer Science

Biographical:

Personal Data: Born in Oklahoma City, Oklahoma, On June 14, 1973,
the son of Jerry and Leonora Grayson.

Education: Graduated from Boley High School, Boley, Oklahoma in
May 1991: received Bachelor of Science degree in Computer Science from
Langston University, Langston, Oklahoma in July 1995. Completed
requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in May 2000.

Experience: Employed by Langston Universty, Department of
Computer Science as an undergraduate research assistant,
1994 - 1995 and as an Instructor 1997 - present. Employed by
Oklahoma State University, Department of Computer Science as a
Graduate teaching assistant, 1995 - 1997 and as an Instructor
1997 - present.

Professional Memeberships: Association of Computing Machinery
(ACM)

