
www.manaraa.com

THE DESIGN AND IMPLEMENTATION OF A WORLD

WIDE WEB NAVIGATION HISTORY TOOL

By

RALPH ANTHONY GRAYSON

Bachelor of Science

Langston University

Langston, Oklahoma

1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 2000

www.manaraa.com

THE DESIGN AND IMPLEMENTATION OF A WORLD

WIDE WEB NAVIGATION HISTORY TOOL

Thesis Approved:

Dean of the Graduate College

II

www.manaraa.com

ACKNOWLEDGEMENTS

I want express my sincere gratitude to Dr. K. M. George, my principal advi er. for

giving me invaluable advice throughout my graduate study. His guidance and generous

aid helped make this work possible.

1 am grateful to Dr. G. E. Hedrick and Dr. Jacques LaFrance who gave m

support and advice to guide me through the thesis writing process. They helped me shape

and organize my work.

Last, but certainly not least, I want to thank God for giving his only begotten Son,

Jesus Christ, who died for my sin, so that I might have abundant life.

111

www.manaraa.com

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

Background 1
The Problem 2
Objective , 2
Organgization 3

II. RELATED WORK 4

III. DEVELOPMENT TOOLS 11
3.1 HyperTextMarkup Language (HTML) 11
3.2 JavaScript. 12

IV. DESIGN AND IMPLEMENTATION 14
4.1 The Framework of Persistent Hlstory Navigation As istanL14
4.2 Interface 16
4.3 Implementation Scheme 18
4.4 Events and States 19
4.5 PHNA Algorithms 21
4.6 Event Loop Algorithm 21
4.7 PHNA's ADT. 22
4.8 PHNA's SAVE_URL Algorithm 26

V. CONCULSION 31

VI. BIBLIOGRAPHy 33

VII. APPENDIX I IMPLEMENTATINON SOURCE CODE .35

VIII. APPINDIX II GLOSSARy 51

IV

www.manaraa.com

LIST OF FIGURES

Figure Page

1. User View Model 15

') PHNA Interface ,. 0 ••••••••••••••••••••••••••••• 0 •••••••• 17

3. PHNA Interface With Graphical History View 0 0 18

4. PHNA Event State Diagram 0 0 19

5. Event Loop 0 • • • • ••••••••••••••••••••••••••••• 20

6. PHNA's ADT 0 o. 0 ••• 0 •• 00 ••••••••• 0 •••••••••• 0 •••••••••••••• 0. 0 ••••••••••••••••• 23

7. SAVE_URL Algorithm o _.. 0 0 0 24

8ao PHNA Visits Site A 0 29

8b. PHNA Visits Site Boo 0 •• 0 '00 0 29

8c. PHNA Visits Site c. 0 0 0 0 0 0 0 30

www.manaraa.com

Chapter I

INTRODUCTION

1.1 Background

The Internet began as ARPNET(Advanced Research Projects Agency Network) a

computer network that was originally developed to link research institutions for the U.S.

department of defense. This network is no longer limited to research institutions and has

grown to millions of sites. Now the Internet is more than a distributed internal network of

computers sharing information via a text-based browser [SS9?]. It has grown to become

a massive loosely configured web of several networks of computers located at sites all

around the world including, but not limited to, schools, organizations, corporations, and

individual homes [Cap98]. The Internet has grown in span largely due to the advent of

the World Wide Web (WWW) authored by Tim Bernes-Lee [BF99]. The World Wide

Web gives information a place to persist [BF99]. All of these site on the WWW contain

information that can be viewed in electronic form. In order to view content of a site

visitors use a web browser. Mosaic was the first widely used browser that could read

information on the Internet as well as display graphics in a variety of formats. Amaya,

Arachne, Opera, Internet Explorer and Netscape Navigator are the names of browsers that

have followed Mosaic. One of the most widely used is Netscape Navigator browser. It

allows its users to view publicly available information on the Internet using protocols

such as HyperText Transfer Protocol (HTTP). The browser also facilitates its user's

movement on the WWW by providing a history list, Forward and Back buttons that aUow

the user to view previously visited sites.

www.manaraa.com

1.2 The Problem

There is a problem with the actual use of the Forward and Back buttons. The

browser keeps a list of the sites visited during a particular session. This list is intended

to be a complete list of the sites visited by a browser since it began executing. However;

often times this is not the case. The Forward and Back buttons are intended to take the

user back and forward through the list of sites kept by the browser. In many cases it does

not do this. The actions of the Forward and Back buttons on browsers can cause users to

experience bewilderment at some point in their sessions by displaying pages that are not

expected by the user [HA Y99]. A solution to this problem is important since studies

have shown that, even though other means of access to history is available, in most cases

users use the Back button to access a previously visited site [AHY99]. In addition to the

frequent use of the Back button the average American Internet user spends 6.7 hours per

week using the Internet [EOROO]. Browser users would greatly benefit from having

navigation features that are modeled after the user's view of navigation sessions.

1.3 Objective

Our research aims to provide the users with a new tool to make navigation easier

than before and provide history that is well organized. In this research we define a user­

view model and present a Persistent History Navigation Assistant (PHNA) based on the

model. This tool provides all of the basic features needed in a navigation session modeled

after the user's view. This tool maintains a complete list of the user's history during and

between sessions. Furthermore, the relative order of visited URLs is also kept. This will

give users the freedom to move back and forth between previously visited sites whether

www.manaraa.com

the sites were encountered during the current use of the browser or not. The PHNA gives

users a set of buttons for navigational support using the mouse.

1.4 Organization

This thesis is organized in the following way: Chapter 1I provides a review

of related work. Chapter III discusses the use of HTML and JavaScript language .

Chapter IV presents the design and implementation of the world wide web navigational

tool. Chapter V concludes the thesis.

3

www.manaraa.com

Chapter II

RELATED WORK

In the previOUS chapter we described the problem that IS present In existing

browsers and a solution to the problem presented in this research. In this chapter we will

discuss work that is related to the research undertaken in this thesis. The work of several

researchers is considered.

The explosive growth of the World Wide Web makes it difficult for users to

locate information that is relevant to her/his" interest [LEA95]. There are many servers

to access and pages to browse [LEA95]. Keeping track of new information as it becomes

available online is a consuming task [LEA95]. As sllch efforts to make technology more

manageable are highly in demand [LEA95]. Using advanced information retrieval

techniques is one approach to such efforts [LEA95]. Regardless of the potential benefit

of these techniques in reducing users' information overload and improving the

effectiveness of access to online information, little research has been done on applying

them to the World Wide Web [LEA95].

Several WWW resource discovery applications have been built to address the

current need to make technology more manageable. These applications while differing in

size and effectiveness in varying degrees share one commonality the use of key word

searching. This method of searching involves the applications receiving a key word and

www.manaraa.com

using that key word to search their internal indexes for occurrences of that word. When

occurrences of the word are found the application shows a list of URLs (. niform

Resource Locator) or page addresses that correspond to the key word used in the search.

This method complements browsing or hypertext navigation, which is the dominant

access method of WWW users, by giving users of the applications potentially relevant

starting points [LEA95].

A major concern with a keyword-based search tool is the design [LEA95]. The

design of the search tool should yield an effective tool that will meet the user's

information requirements. This involves the choice of the search algorithm and the user­

system interaction component [LEA95]. Both of these components are present in

successful commercial keyword-based search tools such as Yahoo, Lycos, Excite, and

Webcrawler. The components of a keyword-based search tool include the indexer robot,

the search engine, and the user interface [LEA95]. The indexer robot contains the

indexes that the search tool uses. The search engine calculates the score of WWW pages

in the index given a key-word.

The user interface to the search engine is an HTML form, which can be invoked

by standard WWW client programs such as Mosaic, Internet Explorer, or Netscape

[LEA95]. The form permits the user to type in a query, execute a search, set the

maximum number of hits, access documentation pages, access/run sample queries or

saved queries, and invoke other HTML forms for registering a URL or writing comments

[LEA95]. Most user interface mechanisms are implemented using the standard Common

5

www.manaraa.com

Gateway Interface (CGI). After the user of the key-word bas d tool types in the

keyword(s), the query can be sent to the search engine by clicking the designated submit

query button. Upon receiving the result form the search engine, the user interface

displays a list of URL's and their respective titles ordered in descending relevance scores.

At this point the user of the tool can physically access the URL's by clicking on the titles.

The user also has access to other information and other facilities.

Organizing a large collection of hypermedia documents is one of many important

issues for effective and efficient use of information [CLV99]. Several Studies have

proposed various clustering techniques [CLV99]. Clustering hypermedia documents

dynamically based on similarity is one proposed solution; however, it has been met with

some difficulty. The classification accuracy is highly dependent on the number of

documents being classified [CLV99]. Also, finding good labels for selected categories

generated based on clustering has proven a problem [CLV991. Because of the

shortcomings the clustering approach has been deemed inferior to the manual

classification and labeling approach for navigation [CLV99].

Classification and navigation has become a dominant approach to acce s

information (CLV99]. Several techniques can be applied to the classification and

navigation approach. A technique which utilizes external c1as ifiers for classifying and

navigating hypermedia documents has been proven to be adaptable and have many

desirable properties [CLV99]. Two such desirable properties are breath and depth of

classification trees. One application the technique has been applied to is a personal URL

www.manaraa.com

bookmark organIzer [CLV99]. In this application the user's bookmarked URLs are

classified based on keywords extracted from documents [CLV99]. These bookmarked

URLs are organized as a hierachical structure for efficient acce s and effective navigation

[CLV99].

Another application is image classification [CLV99]. The application

extracts keywords around images from HTML docwnents to query the user for their

possible categories [CLV99]. Given this information the application organizes images in

a tree structure [CLV99]. This facilities effective navigation and avoids information

clutter. The application further performs image clustering by visual characteristics, such

as color and shape. After clustering one representative image is chosen for each cluster

[CLV99]. The system displays only the representative images of clusters for each

category [CLV99].

Given the potential access to hundreds of millions of pages on the Web, 1110st

users have difficulty finding information they require. It is al 0 easy to become entangled

in a large and complex web of decentralized, unstructured, and potentially unreliable

information [HAY99]. Once the information is found, all of the pages containing

relevant information are not readily accessible. Though it is important to 'find pages that

cuntain useful information, it is also important to support the retrieval of previously

accessed information [HAY99]. Tools that manage user histories are powerful. Given

that half of accessed Web pages are revisits, according to a paper presented in the 8th

international World Wide Web Conference entitled "World Wide Web Infonnation

7

www.manaraa.com

Retrieval Support Through User Historie " written by Milena Head, Norm Arch r, and

Yufei Yuan [HAY99].

Most Web browsers have some type of history support within or between

navigation sessions that allow users to backtrack. This history support is implemented as

a push-down stack [HAY99]. The history stack is not a true trace of the user's navigation

pattern [HAY99]. Also, depending on how the page is loaded, it may pop several pages

from the Bookmarking and History Lists [HAY99]. A history tool called the Memory

Extender Mechanism fur Online Searching (MEMOS) for Netscape Navigator developed

by Milena Head, Norm Archer and Yuffei Yuan, considers this problem [HAY99]. This

tool supports a history list during Navigator sessions [HAY99]. Research that was

conducted using MEMOS has shown that users agree that bookmarks are useful history

aids for sites that are frequently visited [HAY99]. However, bookmarks do not

adequately support less popular sites [HAY99]. It would be unrealistic to suggest that

users should bookmark all potentially relevant pages. This approach would fail since the

bookmark list would soon become unwieldy and the relevance of a page is often not

known until after the page has been shown in the browsing session [HA Y99l

The explosive growth of the WWW makes navigating the web to obtain useful

information an important issue [CLV99) [HAY99] [GW99]. Navigating the web is

mostly a matter of using techniques such as searching for information using keyword and

subject based searches [HAY99) [GW99l However, tools that search are not designed to

find the geographic location of information sources [GW99]. With some exceptions most

8

www.manaraa.com

search tools search the web and return a list of documents that match the keyword or

subject used for the search [HAY99] [GW99]. The current capabilities of search tools do

not fulfill all the needs of a search tool user. There is no way for a search tool u er to

find relationships among several results of a keyword search [GW99]. Searches of search

tool users were analyzed in a study conducted by Jansen eLa!. [BEA98]. This research

revealed that sl:arch tool users are interested in categories dealing with a geographical

location [GW99] [BEA98].

Jayesh Govindarajan and Matthew Ward present a new search tool called

GeoViser [GW99]. GeoViser differs from other search tools (e.g. Excite, Yahoo,

Infoseek) only in that it provides a map of the United States [GW99]. Points are plotted

on this map that correspond to the location of the URL that is given for a particular

search [GW99]. This search tool gives valuable information to users v.ho are looking for

answers to questions that are location specific.

Another problem presented by the users and providers of the internet is that of

consistency [RY99]. When interrelated documents of information are provided over the

internet frequent updates of the information becomes an issue [RY991. Very often users

acquire inconsistent information, or they are unable to acquire any information

whatsoever [RY99J. One sol ution proposed for this problem is found in a technique

presented by Sampath Rangarajan and Shalini Yajnik of Lucent Technologies and Bell

Laboratories respectively IRY99] [R Y99]. This technique involves using client side state

Hypertext Transfer Protocol (HTTP) cookies [RY99] [RY99] [CSS99]. The histories of

9

www.manaraa.com

a client's access are kept using cookies using a technique that i based on the Netscap

cookie proposal [RY99] [RY99] [CSS99].

10

www.manaraa.com

CHAPTER III

DEVELOPMENT TOOLS

3.1 HyperText Markup Language (HTML)

The browser is a client-side software application that allows the user to navigate

the World Wide Web [BF99]. The browser interprets HTML commands to format

documents for the viewer. The browser also gives users the ability to follow links in the

documents. The browser interacting with the server accomplishes this. The user initiates

a request for information or action and the server interprets the request and takes some

action. Among the most popular graphical browsers is Netscape Navigator [BF99].

There are several tools that can be used to create browser enhancem nt that make

the users navigation session more useful including Hypertext Markup Language (HTML)

and JavaScript. HTML code uses a set of tags that tell the brow er how to format, load

and align text and graphics. Tags are commands that define the overall form of the

HTML document and give basic structure to the way a page appears. Tags are not visible

l)n the browser, but their effects are. A tag might note that a line should be a title or a

heading, for example.

Each tag is enclosed in angled brackets. Paired tags are different in that the last

tag has a forward slash just before the command. Commands are not case sensitive. but

are usually written in uppercase to promote clarity by making commands easier to spot

II

www.manaraa.com

when reading an HTML file. Hypertext link are special tags that link one page to

another page or resource. When a mouse is placed over a link and clicked, the browser

jumps to the link's destination.

3.2 JavaScript

JavaScript is a new technology that was developed initially by Netscape under the

name LiveScript. It is intended to extend the capabilities of basic HTML. JavaScript

usually resides between the <SCRIPT> ... </SCRIPT> tags in ordinary HTML documents.

It gives developers the ability to write scripts that interact with objects within a web page,

such as forms, frames, and background color. In its current state it is more closely linked

to Java which is why the name was eventually changed. It is designed to allow logic to

exist on the client side to perform tasks such as data validation.

JavaScript is different from Java in that it is not as strict or sophisticated as Java.

Java is an object-oriented programming language and JavaScript is object-based. Java

has "strong typing (all variable data types must be declared). static binding (object

references must exist at compile time), and is compiled into bytecod . The bytecode is

then interpreted. In contrast, JavaScript has loose-typing and dynamic binding rFS981.

JavaScript is strictly interpreted not compiled even though the term "JavaScript

compiler" is commonly used to refer to the built-in browser mechanism that reads the

code and executes it or produces an error message. Both JavaScript and Java can be used

to make web pages more sophisticated and exciting by executing the 'local code'

[Way97]. The biggest difference is that JavaScript will only run on a browser. It is

12

www.manaraa.com

tightly integrated into HTML whereas Java is simply connected to an HTML document

through the <APPLET> tag and is stored in another file.

JavaScript is interpreted [Way97]. Variable and functions can be defined

dynamically and used several lines later. There is no compiler or preprocessor [Way97].

fhe disadvantage of being interpreted is that it takes longer for the code to execute

because the browser translates the instructions at runtime just before executing them

[WEA97]. The advantage is that it is easier to update the source code. When the script

changes in the source HTML file the new code is executed the next time the user accesses

the document [Way97].

Other characteristics of JavaScript include its being event-driven [WEA97]. Most

JavaScript code is written to respond to events generated by the user or the system.

HTML objects, such as buttons, or text fields are enhanced to support event handlers

[WEA97].

Finally JavaScript is a good multipurpose tool that allows dev lop rs to

accomplish many goals. For example, it helps enhance static IITML pages, through

special effects, animation, and banners [WEA97]. It permits validation of data without

passing everything to the server and is a building block for client/server Web

applications. JavaScript serves as a bond between HTML objects, .Java applets, and

Netscape Plug-ins while providing connectivity without using a Common Gateway

Interface [WEA97].

13

www.manaraa.com

CHAPTER IV

DESIGN AND IMPLEMENTATION

As mentioned in the introduction, the goal of this research is the implementation

of a World Wide Web tool to assist browser users. In order to develop the tool. a user

view model is introduced. Various aspects in the design and implementation of the

PHNA are described in this chapter.

4.1 The Framework of Persistent History Navigation Assistant

In this section we present the basic framework of the PHNA by describing its

GUI, algorithms, ADT, and underlying model. The sites visited by web users can be

viewed as the nodes of a network. Two relations, front and back, can be defined between

two nodes of this graph (shown in figure 1). These relations map to the BACK and

FORWARD buttons. Figure 1 illustrates these concepts. We call this a user view model

14

www.manaraa.com

(2) F L

(3) BAO{

(6) BAO{

(4) F L (~) BAO{

D

Figure 1. User View Model.

of history as opposed to the current stack model. In this model (illustrated in figure 1)

site A is the site that is loaded when the PHNA is started. The user follow a link (F.L.)

from site A to site B. The user then follows a link from site B to site C. The BACK

button (B.B.) is used to visit site B again. From site B a link is followed to site D. When

the user uses the BACK button for the second time he/she is taken to site B. This time

when the BACK Button is used the user is taken to site A in most browsers. However, in

the PHNA the user is taken to site C. This is the correct action taken by a BACK button

modeled after the user's view of history. Current browsers contain BACK and

FORWARD buttons, that often times do not match a user's view of the navigation

history. The confusion caused by BACK and FORWARD buttons that are not modeled

after the user's view is prevented in the PHNA. The BACK and FORWARD buttons

15

www.manaraa.com

have access to the complete history list. The user can also view the complete navigational

history.

The PHNA implements BACK and FORWARD button histories on an inter­

sessional basis using persistent client state H1TP cookies as well as on an intra-sessional

basis using a tree structure implemented using arrays. Previously visited sites can be

visited by clicking the BACK or FORWARD button, or by clicking the VIEW button on

the PHNA interface which produces a visual model of the tree structure, and allows the

user to see how pages relate to one another. Thus, enabling them to make decisions about

the path they want to follow. This is in contrast to the stack model of current browsers

which do not provide a sense of space or proximity modeled after the user's view. The

PHNA utilizes multiple arrays to maintain proper relationships between elements of the

tree. A parent array is used to store Uniform Resource Locators (URL). If links have

been followed the element stored in the parent array is a reference to a separate child

array which in tum contains a reference to the URL. Complete implementation details

can be found in section 4.8. We describe the interface in the following section.

4.2 Interface

The interface of the PHNA facilitates its use. It consists of two frames; an upper

frame for tool use and a lower frame for browsing. Figure 2 illustrates the PI-INA

interface. A user may access sites by using the location bar within the upper frame, or by

following links. Either method produces an entry into the URi_array. If the user revisits

sites by using the BACK and FORWARD buttons, then the site is not added. In this case

the user is logically moved backward or forward to the requested site in the tree.

1/)

www.manaraa.com

The PHNA considers only the sites actually visited and link followed by the us r

when preparing the graph in figure 3. It does not make as umptions about issues of

relevance. This is appropriate since a large number of users report that finding pages

already visited as a problem [BEA99]. This is significant since 88% of individuals pages

are revisits [BEA99].

~'"':-HIStOIY Taol Ffdlht!S· NetllCpc "f.1~

ih~tP:/luvv.acm.org

VIEW HISTORY

••~ t1_ ,,:.
:s::::J Th~rst ~ociety in Com~~ting :'

~ Membership

PCQfossiooals

Sl!.uJ&.ttt;.

~ Publicgtiolls

Association for
Computing Machinery

founded rn , 947, ACM IS the world's firsl
educational and scientific computing society.
Today, our members - ove' 80,000
compuling professlon.ls and studenls
world-";de - and the public turn 10 ACM for
.ulhonl.I publications, plonee"ng
conferences, and ...,onary Ieldershlp for the
new millenmum

S lurd.y. Febru.ry 5, 2000

'Inln Now

~
:illZ1

Purchase
~
r,'mfr-,ence

~UJIill:ll

SubscrIbe to
[:luII!.)1 LllullC'­
~t:I'"

iV"~'J~I'I~:;

What's Ne\IV1
COI1\peto

~:l~·,·_nJ

'Ir~'J.iJ'l1l rfJ,11J
l.-9!!.:...:.:~1

J -ill. l~. 'P ~ J

Figure 2. PHNA Interface.

The VIEW button allows a user to view the history list. The list is presented in a

tree structure as shown in Figure 3, The tree is generated from the information in the

ADT arrays (refer to section 5.2) and is displayed in the lower frame.

17

www.manaraa.com

Inter-sessional support is provided using cookies when the user clicks the SAVE

button. The tree is stored on the users computer for two weeks. To retrieve the tre the

user simply has to click the RETRlEVE button and the list will be loaded.

~~ lIiolo.y Tool F,_eo' Netscape ..r:1EJ

IhUP;//VVV.COlDPuCeLOr\l/ ~ BACK t FORWARD I STOP I RElOAD I
V1f:N HISTORY I PRINT I SAVE I RETRIEVE l HOME I SEARCH I HELP I

hltpJIwww a orFil
h!lpJIwww.acm.orp/pubsf
h!Ip;llwww.acm.orgldll
h!lpJIwww,acm.orglevenui

httpJlWW'.v w3 ",pi
h!Ip:l/www.w3 orwrRl
h!Ip:llwww.w3 rxfIIWAll

htlp:!!www computer.orrtl

D
Figure 3. PHNA Interface with Graphical History View.

4.3 Implementation Scheme

..:J

In this section we describe the details associated with the implementation of the

PHNA. Models and concepts used in designing and implementing PHNA - state

transition diagram, event-driven programming, ADT, etc are provided in this section.

The state diagram, event-loop, and the ADT and algorithms characterize the

implementation. They are described in the following subsections.

18

www.manaraa.com

4.4 Events and States

The key elements of the PHNA are GUI components, Layout, Listening state, and

Event processing. Events signal important user actions like pre sing enter key or a

mouse click. The listening state is the state in which the program waits for events to be

triggered by the user. GUI components, such as buttons and the text field, are the screen

elements that are manipulated by the user with the mouse and keyboard. The layout of

PHNA governs how these elements are presented on the screen. Each element also has

an event (possibly null) associated to it. The elements actions are associated to events.

The PHNA responds to events, generated by GUI components. PHNA waits in

the listening state for these events. An event triggers the execution of a specific code

Start

GUI Load

Action State
•..----t~..(

Waiting State

Figure 4. PHN A Event State Diagram

19

www.manaraa.com

'MIilt (Evel1l. ~ =Quit.){

U.St (GO):
AC TI ON . Sar~ tN currmt URL alii apJ?l'Cl'nall

ptforlNQn:>n Qnd;WQ~ ~" y~winr/'alfU

JMw IN COI7«I urI
U.St (L niK):

ACTION· Sar~ IN b."n);J IR'land ",p~'orm·a~

~orlNQrl?n

U.St (BACK):
AC TI ON· .JtcUJJ ~~ t7I"aJ' RACJ:_Q1'7q! 10 obtain I~

inlH;(/OI' ~~ locicaJp1'r!lHctJJOI' ~IN
CU n'imt IR'J

CaSt (FORWARD):
AC TI ON ".JkC~JJ ~~ t7I"aJ' !'OR WARD_~ " obtafn

Ilu indu/OI' IN Jof{ical JlJU~JJorO/Ihe
CLln'imlurI

Case (STOP)
ACTION - ~'7' IN Joa"nr~th~CUl7t!nt wI

CaSt (RELOAD):
ACTION· ReloadtN CU1'1'r!nt 121

CaSt (PRINT):
ACTION· PrlnttN CUn'mt ')'ONU

CaSt (SEARCH):
ACTION· wad QJtaI'Cn lnginl 121

CaSt (HOME):
AC TI ON . wad t1l~!irJI IR'I in IN ur1 a1?'OJ'

Do s. (SAVE):
ACTION· Sart aU~J G'ldindn Y(7icibkJ"a

&oobt
CaSt (RETRIEVE):

ACTION· Reln."~"'t~ aliiinmuJ,fro1ff ~~ cooki~

CaSt (HELP):
ACTION· Sh:Jw NtJJilt conttntJ

}H8nd hOI! liJop

Figure 5. Event Loop

segment. When PHNA starts it immediately enters the listening state. When an event

occurs, PHNA enters the action state in which events are handled. After the event is

handled the program modifies the GUI, if necessary, and returns to the listening state.

This process is described in the following section. The event state diagram is shown in

Figure 4.

www.manaraa.com

4.5 PHNA Algorithms

The actions of PHNA may be explained via the major algorithms. They are the

event loop algorithm and the SAVE_URL algorithm. Events are the result of user

actions (e.g. button click or keystroke). They are handled by Javascript built in event

handlers which invoke application specific event methods. The event loop algorithm

defines the process PHNA uses to handle specific events including the distinct event

methods that are called.

The SAVE_URL algorithm defines how URLs are saved. The definition covers

all possible instances in which a URL should be saved in order to maintain complete

history of all the sites visited during a particular se sion. This includes URLs that are

typed in, site link clicks, and history link and button clicks.

4.6 Event Loop Algorithm

The event loop algorithm (given in Figure 5) calls several application specific

methods. The GO application method calls the SAVE_URL application method

explained in section 4.8. It passes as an argument the URL that was typed into the text

box in PHNA by the user. The GO application method also changes the view frame

(refer to Figure 2) in PHNA to the URL that the user entered.

In contrast to the GO method, the LINK application method gets the URL from

the view frame. It then calls the SAVE_URL appl ication method and passes this URL as

:2\

www.manaraa.com

an argument. The BACK application method changes the site in the VI scr en by

assigning it the predecessor of the current RL. It gets the predecessor of the current

URL by calling PHNA's MOVE_BACK method described in section 4.7. The

application method named FORWARD gets a succe sor to the current RL from the

MOVE_BACK method. The successor URL is then assigned to the view screen. The

STOP application method stops the loading of the current URL. The RELOAD

application method loads the current URL in the view screen. It gets the current URL

from the GET_CURRENT_URL method explained in section 4.7. The Print application

method prints the site shown in the view screen. The SEARCH application method loads

search engine site www.netscape.com. Home is an application method that loads the first

URL in the history list in the view screen. The SAVE application method saves the

PHNA data structure in a cookie by using the SAVE_AS_COOKIE discussed in section

4.7. RETRIEVE is the application method that retrieves and restores the data structure

saved by the SAVE_AS_COOK1E. The HELP application hows a erie of help screen

to assist the user in the use of the PHNA.

4.7 PHNA's ADT

The essence of the PHNA implementation is encapsulated in its ADT. Th

PHNA Abstract data type (shown in figure 6) is composed of nine private data members

and five service methods. The program uses this data type to perform functions that are

vital to keeping a complete history list and providing user access to this list in a way that

is consistent with the users-view model based view of history. One of the private data

members is the dynamic string array URL_array. This array is used to store all of the

URLs that are visited. The BACK_array is a dynamic integer array that is used to store

22

www.manaraa.com

CllSi History \

Prl~'lte:

String URL_uny II;
lIlt BACK_mlrtl;

Int FORWARDl);

int ClilLD_COUIIIIl;

Strlng cmw 1111;
int li'RL_Index;

lnt BACK_Index;

Inl FORWARD_index;

Int CURRENT_Index;

Public:

IIS~t daJ4l1ltNtTS/u /lCIIIIW

voId SAVE_AS_COOKIEO

IlRts14rt dJIlilI/ltIllJUrsfTII. tht CIlII/ik

void RETRIEVE]ROM_COOKIEQ

IIR tbInu IIgbIprtdt£ttslf Dfthe CMlTtllllU'l

String MOVE_BACKO

IlRttnuls IIgkaJ $IlCCttsOT' 1I/1JIt CIi1TtId Ilri

String MOVE]ORWARDO

IIS~tS alU'llllgllllltllJ IIIId ~PTllprllU

i!ifOf1fl t6JiJn

Ilrtblnu tnu 1/SlltCts:j/JJ alldfalst DtheTWlst

SAVE_URL(Slring FORMAL_URL. Boolean
CIDLD_URL)

WEnd Cllss History

Figure 6. PHNA's ADT

www.manaraa.com

l/I'll.tjbllDHillf 1Ittt1tD4.fml1!! tile apprupri/* ilIdII:~

llURI. DIII1 \IlIIaIe.r lit~.r

S.~VE_URL (SlI1Dg URL, Boolt. CHILD_URL){

l!Sa>y I1Ie URL ID I1Ie JHT1PU en-t ill URI_DmI1

UlU._.,..,[URL_btdtI) = URL

If (URI._Indn > O){

1tSa>tt de i1ttkx qftile ClUJ¥:III URL ill tire propeT

llelerrtelllqftlre li~cr_DmI1

BACK_~y~ACK_btdu]=C~nDt

++BACK_lndtx

OuTtnt)nda = URL_lndu

1!Sa»t de bI4ex qftAe t:JImlll URL fa Ae pt'Ol'tT

Ilduwlll q{'tht FOR WARD_an'If'

FORWARD_ll/!'lIy[FORWARDJnda] =OIrnDl_lndtl

++FORWARD-,Ddu

lllEitdif

Dsr

Currtnt_lDda = URL-,ndu

If(amD_URL = FALSE) (

II'brIitJJi:e delflt III qfCHILD_(lin ""'!J'

OIRD_CoDDI(URL_btdu) = 0

1t'Crr,* /I rq'tmtu ID QIf ""If' tlrlll .rllnu the c.mlll
lIURI..·.r clUW/U

CHILD[URL_indcx) =ntW wnyO
II1I1liJJJJy thefln'J demelfl tf I1Ie jfntelmteJtJoff1Ie IftwIII'"lJ'

Olll.D[URL_lodu)(OULD_COUOI [URL_indaJl =""
I IIE1t41f

ElSt {

111"=_11I eletllelfl qfCHILD_CoIII/I IIIJ'tfI

++ClDLD_COIU1lllJRL-'0do1
IIAssirIlI1le C_' ORL 10 tire ptDl'tT JIICIJIiotl ill lite CHIW III'"lJ'

CIDLD[URL_lndaj(OHLD_CountfURL_lndull-URI.

IIIE"dElse

~+URL-,ndn

} II EItIJ SA VE_ URL

Figure 7. SAVE_URL Algorithm

24

www.manaraa.com

the indices. The indices that are stored in the array are the indices of predecessor URLs.

The FORWARD_array is also a dynamic integer array that stores indexes. However; the

indices that are stored in thi.s array are indices of successor URLs. The CHILD Count

array is an array that is used to store the number of children of each URL stored in the

URL array (or the number of URLs that are visited as a result of following a link from

that URL). The CHILD array is a dynamic two-dimensional array that stores the actual

child URLs. The first dimension corresponds to the URL in the URL array the second

dimension contains the child URL. The URL_index, BACKjndex, and

FORWARDjndex are integer variables used to access the URL_array, BACK_array,

and FORWARD_array arrays respectively. However; the CURRENT_index integer

variable holds the index of the URL that is currently seen in the view frame.

The MOVE_BACK method uses CURRENT_index to access the BACK_array.

This element in the BACK_array is the index of the element in the URL_array that

contains the predecessor of the current URL. The predecessor URL i then returned by

the MOVE BACK method.

The MOVE FORWARD method uses the CURRENT index to access the

FORWARD_array. This access yields the index of the successor to the current URL that

is saved in the URL_array. The index is used to obtain the successor URL. The

MOVE_FORWARD array then returns this successor URL.

The SAVE AS COOKIE method concatenates all of the content of the data

members into a string object and saves the contents of this string object in a cookie. The

RETRlE_FROM_COOKIE method retrieves the cookie and assigns the contents to a

25

www.manaraa.com

string object. It then reassIgns the values to their appropriate data members. The

SAVE_URL method saves URLs according to the user view model.

4.8 PUNA's SAVE_URL Algorithm

The SAVE_URL algorithm (shown In Figure 7) is implemented in the

SAVE_URL method. This method facilitates the saving of all URLs visited by the user

and ensures that the resulting history preserves the user view model. It accomplishes this

by utilizing all the private data members. Figures 8a-8c illustrate the actions performed

by the algorithm using three snap shots.

integer variable CURRENT_index the value of the index of the recently saved URL.

is the first URL visited, there is no successor, predecessor, or child URL. We assign the

variable. Then assign the index of the element in the URL_array that contains the

:?
'

Therefore, we assign the value of

Each visited URL is saved in the first available element in the URL_array. If this

However, if this is not the first URL visited, then we save the value of CURRENT_index

the predecessor to the previous URL.

recently saved URL to CURRENT_index. CURRENTjndex now contains the index of

In BACK_array using BACK_index as an index and increment the BACK index

CURRENT index to FORWARD_array using the FORWARD index variable as an

index.

If the visited URL is not a child URL then the corresponding element in the

CHILD_array is initialized to zero. However, if this URL is a child URL then the value in

the corresponding CHILD_Count array is incremented by one. We instantiate an array

26

www.manaraa.com

object and make the first element in the array reference this array object. Then save the

URL at the proper location in the CHILD_URL by using the values in URLjndex and

the value in the CHILD COUNT array. We increment the URL index, BACK index,
- --

and FORWARD_index variables so it may be used to access the next empty slot in the

Figures 8.a, 8.b, and 8.c illustrate the effect of the algorithm via an example. We

assume that a user visits three different sites. The URLs of the sites are represented by

sites A, B, and C respectively. Site A is visited when PHNA starts. The user clicks a

link in site A connecting him/her to site B. The user then enters the URL for site C in

PHNA's locaction box and clicks the GO button. In this session URL B is a child of A.

A and C do not have any parent URLs. A is the URL of the first site visited. It is saved

as the first element of the array URL_array. All elements of the BACK_array.

FORWARD_array, CHILD_Count, and the CHILD array remain empty since no URL

other than A has been visited. Two private data members of PHNA's ADT (URLjndex

and BACKjndex) have values of one. This is the index of the next empty in th

URL_array. Since the first slot in the URL_array contains the URL of the site that is

viewed when the PHNA is started. The array BACK_array will never have a value in its

tirst element since there is no predessor for the first URL. Therefore, the first value

stored in Back_array is stored in its second element element BACK_array[I].

CURRENT_index is zero because the URL of the site being viewed (in the view screen)

is in the first element in the URL_array (URL_array[O]). FORWARD index contains the

value zero because URL A has no successor.

27

~...

..•

www.manaraa.com

When the second site is visited its URL (B) is saved in the second element of the

URL_array. This site was visited by clicking on a link in the previous site (A). This

makes B a child of A. B is saved in the second location in the URL_array. The integer

zero is saved in the second location of the BACK_array. Because the predecessor to the

URL B is A and the index of the element that contains A in the URL_array is zero. One

is saved in the first element of the URL array since B is the successor of A. The index of

the element containing B in the URL_array is one. The first element in the

CHILD_Count array is assigned the value of one. B is a child of A so URL A has one

child. We instantiate an array and make the first element in the array reference this array

object. We then store the URL B and all subsequent child URLs of A in this array object.

The second element in the CHILD array remains empty and the second element in

CHILD_Count array is assigned the value of zero because B has no children.

URL_index is incremented by one so that it can index the next empty element in the

URL_array. One is assigned to CURRENT_index since the index needed to asscess B in

the URL_array is one. The variables BACK_index and FORWARDjndex are assigned

the value of two and one respectively so that they can save the appropriate indices when

the next site is visited.

The URL C is saved in the third element of the URL_array when C is entered into

the location box of the PHNA and the go button is pressed. The corresponding third

element in the BACK_array is assigned the integer one (the index of C's predecessor in

the URL_array). The second element in the FORWARD_array is assigned the value of

two (the index of B's successor in the URL_array). The third element in Child count is

28

)...,..
,...
,
I

:.....

;r

www.manaraa.com

BAO_Uldo

,_+-+-B.:::.A:.::CK::.:--:.:-.»2.- ------------------- """""')

Figure 8a. PHNA state after the initial visit (to site A)

).,
"..
.'..
;~

:..

...

-1 .'~- -oS _-J FORWARD-..y

.,

l-:-T
" L

nnw

l1RI. mdrx

f - I

FORWARD mdt::l:

'. - i . i
/

et-RRIJ'/l .,doc

..
•r
.~.,
1i
1
,I.
o.

Figure 8b_ State of PHNA after viewing another site (Site 8)

29

www.manaraa.com

Figure 8c . PHNA state after visiting site C

30

..

:>
...'
.~

:1

www.manaraa.com

CHAPTER V

Conclusion

Netscape Navigator™ and other browsers have features that may cause for users

confusion. Features such as the BACK and FORWARD buttons on these browsers are

intended to help the user navigate the World Wide Web. However, since these features

use a history that is not modeled after the user's logical view of their navigational pattern

they can cause confusion instead of providing clarity. This confusion is due in part

because the history is implemented using a pushdown stack. Depending on how some

sites are loaded the browser may pop sites of the stack and never push them back onto the

stack. This effectively loses sites by making them makes inaccessible to users through

the BACK and FORWARD buttons.

This research presents the PHNA as a solution to the problem of improperly

modeled history lists found in browsers. The PHNA provides the user with BACK and

FORWARD buttons that are modeled after the user's view of history. Its history is

implemented using dynamic arrays. This saves space and allows all visited sites to be

saved in a way that corresponds with the user's view of history. Since the PHNA uses

arrays to store its history no sites are lost as result of the user going back several sites.

The PHNA can be used with any Javascript™ enabled Netscape browser.

Persistent client state HTTP cookies are used to save the complete history list. Which

31

")
,·
·.)...'

'".r·
:(,

www.manaraa.com

~3n be retrieved or overwritten 10 a later browser sessIOn. The PHN eliminates

confusion caused by incomplete history lists that are not modeled after the user's view.

32

)

.
.)...'

.,
t
!J
..\
(

www.manaraa.com

REFERENCES

[AA99] The Anatomy of an Applet. Java Tutorial,
http://www.gip.jipdec.or.jp/-kato/java_tutorial/applet/antomy/index.htrnl

[BEA98] Bateman, j., et al., The subjects they search, and sufficiency: A study of a large
sample of EXCITE searches, In Proceedings WebNet '98, November, 1998.

[BF99] Bemers-Lee, Tim, Fischetti, Weaving The Web, HaperCollins, 1999

[CHI96] Chan, P., Hopson, K. c., Ingr.un So, E., "Developing Professional Java Applets",
Sam Publishing, 1996

[CSS99] "Client Side State - HTTP Cookies",
http://homeonetscape.comlnewreflstd/cookie spec.html.

[CLV99] Chang, Edward, Li, Wen-Syan and Quoc Vu" On Constructing Personalized
Navigation Trees for Web Documents, 8th International World Wide Web
Conference 1999

[DB96] Davis, O. McGinn, T., Bhatiani, A., "Instant Java Applets" Ziff-Davis press, 1996

[DD97] Deitel, H.M..·, Deitel, P., J. Java How To Program, Prentice Hall, 1997

[EEA99] Eades, Peter, et. al, Visual Web Browser - mapping and browsing the web
with a sense of "space" 8th International World Wide Web Conference 1999,
ppo86-87

[FEA97] Feather, S., "Java Script by Example". Joseph B. Wilcert and Co., 1997

[GR96] Gulbransen, D., Ko Rawlings,]. December,].
"Creating Web Applets With Java",1996

[GW99] Govindarajan,]., Ward, Mo, "GeoViser: Geo-Spatial Clustering and Visualization of
Search Engine Results" 8th International World Wide Web Conference 1999

[HAY99] Archer, No, Head, Mo,Yuan, Y., Wold Wide Information Retrieval Support
Through User Histories, 8'h International World Wide Web Conference 1999

,'3

)

)..

..
;1
:J

www.manaraa.com

[KM99] Kopetzky, Teodorich, Max Muhlhauser, Visual Preview for Link Trav r al on
the WWW, 8

th
International World Wide Web Conference 1999

[http://www8.orgiw8-papers/4b-Iinks/visual/visual.html]

[Mcc96] McComb, Gordon. "javaScript Source Book" john Wiley & Sons, Inc. New York
1996

UVJ97] java Versus java Script. Special Edition Using]ava, Second Edition. 1996-97

[LEA9S] Lam, Savio L. Y., et al., A World Wide Web Resource Discovery System, WWW 5
1996

[LL98] Lewis,] ohn & Loftus, Willam Java Software Solutions, Addison Wesley, 1998

[OA97] Overview of Applets. Java Tutorial. 1996-97

[PM97] Purell, Lee, Mary Jane Mara, "The ABC's ofJava Script" Sybex, Inc. Alameda, CA.
1997

[Rey96] Reynolds, M. c., Wooldridge, A.., "Using JavaScript Special Edition" QUE, 1996

[RY99] Rangarajan, S., Yajnik, S. WCS: Con i tent Update and Retrieval of Document In

a WWWServer, 8tb International World Wide Web Conference 1999

lSS97] Sachs, David and Henry Stair. The 7 Keys to Effective Web Sites. Prentice
Hall, 1997.

[Way97] Wayner, Peter. Java and j avaScript Programming, Academic Press Inc., 1997

[WEA97] Wagoner, Richard, et al.,JavaScript Unleashed, 2nJ ed. Sams.net, 1997

[WJS97] What Is]ava Script? java Script Handbook. 1996-97.

34

www.manaraa.com

Appendix I

IMPLEMENTATION SOURCE CODE

Start Frame
<html>
<head>
<title>History Tool Start Page</title>
</head>

<body bgColor=Silver>
<SCRIPT LANGUAGE="JavaScript">
/1<1 __

var newWindow
IIOpen a new window with no location box
newWindow=
window.open("HistoryFrames_l.html" ,"","location=O,toolbar=O,resizable= I.scrollbars= I

,status=l,menubar=l ")
Ilc10se the current window
window.c1oseO
II -->
</SCRIPT>
</body>
</html>

Frame Set

<html>
<head>
<title>History Tool Frames</title>
</head>

<Frameset Rows=" 15%,85%">

<Frame SRC="Hist_tool_l.html" Name = "bridge" >
<Frame SRC=''http://a.cs.okstate.edu'' Name = "screen">

<IFrameset>

</html>
Driver Frame

35

www.manaraa.com

<html>
<head>
<title>History Tool Control Frame</title>
</head>
<body bgColor=silver>
<SCRIPT LANGUAGE="JavaScript">
<!--

INariable to contain the selected text
var selected Text= ,,,,
INariable that designates a selected text event
var select = a
var part = ""
var add = ''http://''
var temp = 0
IfDesignates the URL change as the result of a link click
var link = 0
IISyncohnizies the link_click function with other functions
var start = 0
IIArray to store URLs
var RL = new ArrayO
IIArray to store appropriate BACK uri indices
var B_ RL =new ArrayO
IIArray to store appropriate Forward uri indices
var F_URL = new ArrayO
//Array used to store an array of Uris that are result of following a link from

another rl
var Child =new ArrayO
IIArray used to store the number of children a Uri has
var Child_Count = new ArrayO
//Index for Child array
var Child index = 0
/IThe URL array wi II always fi 11 up olle clement ahcad 0 f the F_URL array
var index = 0
liThe first array element of the B_URL will always be empty
var B index = I
liThe F_ URL array will always fill up one element behind the B_U RL array
var F index = 0
var temp = 0
var Back = I

36

www.manaraa.com

var Forward = 0
var Current = 0
liThe name of the cookie that is saved and retrieved
var cookie Name = "PHT info"- -

1Ivariable used to store cookie information
var Cookie_comp = II II

var Cookie arc = ""
var urlString = tIll

IIAssign the first element of the URL array an intial value
URL[index]= "file:IIIA:\paper_graphic.htm"
IIMake a child array for this URL

Child[O] = new ArrayO
Child[OJ[O] = " II

IISet the number of children this URL has to zero
Child_Count[O] = 0
++index
IICall to getyriv
getyrivO

1*
This function gains security access and uses a timer to
caU the function load in four seconds.

*1
function getyriv() {

IIObtain Universal Browser Access so the UrI of the "Screen" frame can
be viewed

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserAccess")
IICa11 the Load functi.on in four seconds
timerlD = setlntervaICLoadO', 4000)

I
I

I

www.manaraa.com

}
/*

This function clears the previous timer and sets a new one that
calls the link_click method every two seconds.

*/
function LoadO {

clearlnterval(timerID)
timerlD = setlnterval('link_clickO', 1000)

}

/*
This function changes the "Screen" frame to a URL by accessing the
the appriopriate element of the Back array and using its value
as an index to the URL array. The function then changes the
appriopriate arrays and variables.

*/

function goPrevO {

//Obtain Universal Brower Access so the Uri of the "Screen" frame can
be viewed

netscape.security.PrivilegeManager.enablePrivilege("UnivcrsaIBrowserAccess")

//Disable the link method
start = 1
if (Bjndex == l){

alert("Please visit another site before using the Back button")
)
)

else{
if (Current == O){

alert("You are at the beginning of your history list.")
I
J

else{
/IAssign the current index teh correctindex to the URL

array
Back = B_URL[Current]

38

www.manaraa.com

//change value of the current variable to repr sent the
//approiate po ition in the array
Current = Back
//Change the "viewing" screen (screen frame)
//show the correct RL
parent.frames[1) .Iocation.href = URL[Back1
}//End Second Else

}IIEnd First Else
//Wait for the URL to load into the "screen" frame

while (parent.frames[1].location.href!= URL[Current])
start = I

liEnable the link method
start = 0

}IIEnd goPrev

1*
This function changes the "Screen" frame to a URL by accessing the
the appriopriate element of the Forward array and using its value
as an index to the URL array. The function then changes the
appriopriate arrays and variabl s.

*/

function goNextO {

/IObtain Universal Browser Access so the UrI of the "Screen" frame can be

viewed

netscape.security. PrivilegeManager.enablePrivilege(" Universal BrowserAccess")

IIDisable the link method
start = I

if(F index == -I) {
- alert(" Please visit a site before you use the FORWARD button. ")

}
else {

if(Current >= F_index){

39

www.manaraa.com

the

URL

alert("You are at the end of your history.")
}
else{

IIAssign the cument index to the variable Forward
Forward = F_URL[Current]
Ilchange value of the current variable to represent

I/approiate position in the array
Current = Forward
IIMake the view frame "screen" show the correct

parent. frames[1].location.href = URL[Forward]
}IIEnd Second Else

}IIEnd First Else

I/Wait for the URL to load into the "screen" frame
while (parent.frames[l].location.nref!= URL[CurrentJ)

start = 1
liEnable the link method

start = 0
}I/End of goNext

1*
This function obtains the appropriate URL and changes the Frame
"Screen" to that URL and assigns the appropriate values to
arrays and variables in tbis program.

*1

function go_locationO {
urlString = ""

//Obtain security access

netscape.security. Privi legeManager.enablePrivilege(" Uni versalBrowserAcce s")
IIDisable link method
start = I
/ICheck to see if the go_location method was called as a result
Ilof a link click or the use of the location box or button.
Ilifthe result ofa link click then get the URL of the
I/"screen" frame and assingn it to the variable urlString.

40

1
)
)

www.manaraa.com

II

Illf not then the method was called as a result of the u e
Ilof the location box or button in which case the variable
IlurlString is assinged the URL given in the location box.
if (link == 1)
(
I

urlString = parent.frames[1] .location. href

}
else{
IIAssign the value of the Locationbox to the variable
urlString = document.forms[O] .LocationBox. value

if (urlString != "") {
IIAdd the Protocol ''http://''

if(add!= urlString.substring(O,7»
{

uri String = add + uri String

IIAdd a "I" to the end of the URL irone is not present
len = urlString.length
part = uriString.substring(len - 3Jen)
if «urIString.charAt(len - I) != "I")&&«part == "com")II(part ==

"edu")II(part == "org")II(part == "gov"»))
urI String = urlString + "I"

Ilif the call to the method was not a result of the user clicking on a

link
IIMake the view frame show the URL in the variable

if(link = O){
parent.frames[l].location.href= uriString

4\

www.manaraa.com

URLto

IIMake a child array for this URL
Child[Current] = new ArrayO

IISet the number of children this URL has to zero
Child_Count[Current] = a

alert("The value of Child_Count is=")
alert(Child_Count[Current])

}
else{

II Assign the integer in the number of children the URL has to the
II child index varible so the value can be lIsed to add the current

II the child array of the previous URL
Child_index = Child_Count[Current]

IIAdd the current URL to the parents Child array
Child[Current][Child_index] = urI String
alert("The value of urlString =")
alert(urlString)
IIAdd one to the value in the Child_Count array
Child_Count[Current] = Child_CountICurrent] +

Ilalert("The value of ChilJ[Current][Child_index] is =")
Ilalert(ChiJd[CurrentHChildjndex])

}IIEnd Else

IIAssign the "screen" frame's URL to the RL array
URL[index] = urlString
IIAssign the index of URL to the correct position

42

1
J
)

j
...

www.manaraa.com

llin the back array
B_URL[B_index] = Current
++B index
IIMake the current indicate the correct position in the array

Current = index
IIAssign the index ofURL to the corr ct position
Ilin the forward array
liThe index is added one element behind the back array and
Iitwo elements behind the URL array
IIIf the use of the "Back" Button does not preceede the
Iluse of the go to then first condition else second
Iisecond condition

if (Current> F_index)
{

F_URL[Fjndex] = index
++F index

}
else
{

F_URL[Current]
}

++index
IIWait for the URL to load into the "screen" frame
while (parent.frames[1].Iocation.href != URLfCurrent j)

start = I
liEnable link method
tart = 0

link =0

I
J
,)

j...
}
else {

}

alert("Please enter a URL before clicking the Location bulton.")

} IIEnd goJocation

function child() {

43

www.manaraa.com

1* This function deletes a previous cookie if there is one. Then it
assigns all the cookie values to a string.

*1
function set_Cookie_lnfoO {

INarible to represent Two_Weeks = 12096 * 100000
var Two Weeks = 14 * 24 * 60 * 60 * 10000
var expr = new DateO;

IISet the time for the cookie to expire as two weeks from the current time
expr.setTime (expr.getTimeO + Two_Weeks)
IISave cookie information in a string object with a I as a seperator
liThe join method puts array methods into strings seperated by commas
Cookie_arc += URLjoinO + "'"
Cookie_arc += B_URLjoinO + "'"
Cookie_arc += F_URLjoinO + "'"
Cookie arc += index + '"''

Cookie arc += Current + "'"
Cookie arc += B index + "'"- -

Cookie arc += F index + "'"- -

var expString = "; expires=" + expr.toGMTStringO

document.cookie = cookie_Name + "=" + escape (Cookie_arc) +
expString

alert(document.cookie)
} II end function setCookiejnfo

I*This function retrieves all the cookie that has been saved.
It places all the saved cookies in a string variable and search through
this variable for the desired cookie* I

function retrieve_Cookie 0 {
var components = nut!

44

,

•J
j

:i...

www.manaraa.com

IIPuts a blank at the beginning of cookie and a semicolon at the end of the
cookies saved

var saved_cookie = " II + document.cookie + ";"
II Creates a search string with the name of the cookie and an equal sign
var search name = II II + cookie Name + n="

- -
II Searches through all the active cookies that have been saved on machine

for the seach string
var start_cookie = saved_cookie.indexOf(search_name)
II This variable is used to store the index of the end 0 f the de ired cookie
var end cookie
II The if statement puts the desired cookie into a string called components
if (start_cookie != -1) {

start_cookie += search_name.length
end_cookie = saved_cookie.indexOf(";", start_cookie)
components = unescape(saved_cookie.substring(start_cookie,

} II end if

Ilalert("This is the retrieved cookie string:" + components)

return components
} II end function getCookie

/*

This function recieves the cookie string returned by the
function get cookie. The function then parses the string
values into the appropriate program variables.

*/
function retrieve_Cookie_ComponentsO {

var tmp_1 = 0
var tmp_2 = 0
var tmp_string = new StringO
var cookie_comp = new StringO

akrt(document.cookie)
//Call the get_Cookie function to get desired cookie in

string form
cookie_comp = retrieve_CookieO

45

www.manaraa.com

1*

*/

IIRestore all the cookie value to their appropriate positons
libya signing the values between the ingle qoute to their
Ilappropriate variables
tmp_l = cookie_comp.indexOf('''IJ)
tmp_string = cookie_comp.substring(O, tmp_l)
URL = tmp_string.split(",")

tmp_l += 1
tmp_2 = cookie_comp.indexOf(""',tmp_l)
tmp_string = cookie_comp.substring(tmp_l, tmp_2)
B_URL = tmp_string.split(",")

tmp_2 += I
tmp_l = cookie_cornp.indexOf(''''',tmp_2)
tmp_string = cookie_comp.substring(tmp_2, tmp_l)
F_URL = tmp_string.split(",")

tmp_l += 1
tmp_2 = cookie_comp.indexOf("lll,tmp 1)
index = cookie_comp.substring(tmp_l, tmp_2)

tmp_2 += I
tmp_l = cooki _comp.indexOf("''',tmp_2)
Current = cookie_comp.substring(tmp_2, tmp_1)

tmp_l += 1
tmp_2 = cookie_comp.indexOf("''',lmp_l)
B_index = cookie_comp.substring(tmp_l, tmp_2)

tmp_2 += I
tmp_l = cook ie_comp.indexOf('"11 ,tmp_2)
F_index = cookie_comp. ub tring(tmp_2, tmp_l)

} II end retrieve_Cookie_Components

This function prints the contents of the URL array to
the "Screen" frame with a go besided the element.

46

www.manaraa.com

function print_HistO {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrow erAccess")

IIClear the current time interval
clearinterval(timerID)

top.frames[1].document.clearO
top. frames[1].document.write("<HTML><HEAD> TITLE>Viewing

Category</TITLE>")
top.frames[l].document.write("</HEAD><BODY><FORM>")
top.frames[1].document.write("<CENTER><H I>History

List</H 1><ICENTER>
")

for (var i = 0; i < URL.length; i++) {
top.frames[l].document.write(URL[i] +" ")
top.frames[l].document.write(" <INPUT TYPE=\"button\"

VALUE=\"GO\" onClick=\"top.frames[O].go_histJocation(" + i + ")\">")
top.frames[l].document.write("

")

II alert('inside print_Hist for loop')
} II end for

top. frames [1] .document.write("</FORM></BODY></HTM L>")
top.frames[1].document.c1oseO
} II end function print_History

1*
This function changes the URL viewed in the child frame to the
URL selected by the user

*1
function go_histJocation(index) {
IIChange the "Screen" frame to the URL specified by user
parent.frames[l].location.href = URL[index1

IISet a new time interval for one second
timerID = setlnterval('link_click()', 1000)
} II end go_histJocation

1*

47

www.manaraa.com

This function checks to see if a click has occurred on a
link in the "Screen" frame. If one has occured the goJocation
function is called. If no link has been followed no action is
taken.

*1
function link_c1ickO {

IIObtain Universal Browser Access so the Uri of the "Screen" frame can
be viewed

netscape.security .Privi legeManager. enablePrivi lege(" UniversalBrowserAccess")

if((parent.frames[l].location.hrefl= URL[Current])&&(start == 0))
{

IISet the link variable to one to indicate that the goJocation
Ilmethod was called as a result of a the user following a link that it

was
link = I
1* alert ("in go 10cation")*1
goJocationO

11-->
</SCRfPT>
<form method="post">
<p>
<table border=O width= 100%>
<tr>
<td valign=top width=30%>

<input
name="LocationBox"
type="text"
size=25
maxlength=50
onChange="go_locationO">

<ltd>

<ld valign=top width=70%>
<input

48

'.

www.manaraa.com

type=" button"
value="GO"
onClick=" go_locationO">

<input
type="button"
value=" BACK "
onClick="goPrevO">

<input
type=" button"
value="FORWARD"
onClick="goNextO">

<input
type="button"
value=STOP>

<input
type=" button"
value=RELOAD>

<ltd>
</tr>
<tr></tr>
<tr>
<td col span = 2>

<input
type=" button"
value="VIEW HISTORY"
onClick="print_HistO">

<input
type="button"
value=PRINT>

<input
type="button"
value=" SAVE "
onClick="set Cookie InfoO"- -

<input
type="button"
value=" RETRIEVE"
onClick="retrieve_Cookie_ComponentsO">

<input
type="button"

49

www.manaraa.com

value=HOME>
<input

type=" button"
value=SEARCH>

<input
type="button"
value=HELP>

<ltd>
</tr>
</table>
</fonn></P>
</body>
</html>

50

www.manaraa.com

Appendix II

Glossary

Application

Cookies:

HyperText Markup Language (HTML)

HyperText Transfer Protocol (HTTP)

Internet

Network

Uniform Resource Locator (URL)

51

Computer programs that perform
useful work not relate to the
computer itself.

Cookies are a general mechanism
which server side connections (uch
as CGI scripts) can use to both store
and retrieve information on the client
side of the connection.

A set of codes that can be inserted
into text files to indicate special
typefaces. inserted images. and Iinks
to other hypertext document .

A standard method of publishing
information as hypertext in HTML.

A coperative message-forward
system linking computer networks
all over the world.

A set of computers connected
together.

A way of specifying the location of
publicly available information on the
Internet.

www.manaraa.com

VITA

Ralph A. Grayson '

Candidate of the Degree of

Master of Science

Thesis: THE DESIGN AND IMPLEMENTATIO OF A WORLD WIDE WEB
NAVIGATION HISTORY TOOL

Major Field: Computer Science

niographical:

Personal Data: Born in Oklahoma City, Oklahoma, On June 14, 1973,
the son of Jerry and Leonora Grayson.

Education: Graduated from Boley High School, Boley, Oklahoma in
May 1991; received Bachelor of Science degree in Computer Science from
Langston University, Langston, Oklahoma in July 1995. Completed
requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in May 2000.

Experience: Employed by Langston Universty, Department of
Computer Science as an undergraduate research assistant,
1994 - 1995 and as an Instructor 1997 - present. Employed by
Oklahoma State University, Department of Computer Science as a
Graduate teaching assistant 1995 - 1997 and as an Instructor
1997 - present.

Professional Memeberships: Association of Computing Machinery
(ACM)

